Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Monoclinic distortion and magnetic transitions in FeO under pressure and temperature

Li, Xiang ; Bykova, Elena ; Vasiukov, Denis LU orcid ; Aprilis, Georgios ; Chariton, Stella ; Cerantola, Valerio ; Bykov, Maxim ; Müller, Susanne ; Pakhomova, Anna and Akbar, Fariia I. , et al. (2024) In Communications Physics 7(1).
Abstract

Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a... (More)

Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe2.5+, caused by the electron exchange between the Fe3+ defect and neighboring Fe2+ atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and show the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions.

(Less)
Please use this url to cite or link to this publication:
@article{48cf67e7-13bc-438d-8a83-7b8cdb84cd70,
  abstract     = {{<p>Fe<sub>1-x</sub>O, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe<sub>1-x</sub>O and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe<sub>0.94</sub>O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe<sub>0.94</sub>O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe<sup>2.5+</sup>, caused by the electron exchange between the Fe<sup>3+</sup> defect and neighboring Fe<sup>2+</sup> atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe<sub>1-x</sub>O and show the complex physicochemical properties of simple Fe<sub>1-x</sub>O binary oxide under extreme conditions.</p>}},
  author       = {{Li, Xiang and Bykova, Elena and Vasiukov, Denis and Aprilis, Georgios and Chariton, Stella and Cerantola, Valerio and Bykov, Maxim and Müller, Susanne and Pakhomova, Anna and Akbar, Fariia I. and Mukhina, Elena and Kantor, Innokenty and Glazyrin, Konstantin and Comboni, Davide and Chumakov, Aleksandr I. and McCammon, Catherine and Dubrovinsky, Leonid and Sanchez-Valle, Carmen and Kupenko, Ilya}},
  issn         = {{2399-3650}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Nature Publishing Group}},
  series       = {{Communications Physics}},
  title        = {{Monoclinic distortion and magnetic transitions in FeO under pressure and temperature}},
  url          = {{http://dx.doi.org/10.1038/s42005-024-01797-1}},
  doi          = {{10.1038/s42005-024-01797-1}},
  volume       = {{7}},
  year         = {{2024}},
}