Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Advancements in Laser-Induced Lifetime Measurements for Combustion and Plasma Studies

Nilsson, Sebastian LU (2024)
Abstract
Recent technological advancements have led to the creation of highly specialized systems across various industries, enabling tasks that were once beyond imagination. As the global demand for sustainable and efficient energy solutions grows, the urgency for innovation in technology has never been greater. These advancements are not simply incremental but represent transformative changes that are reshaping entire sectors. From the expansion of renewable energy sources like solar and wind to the improvement of traditional fossil fuel systems and nuclear power, technology is driving a more sustainable and efficient future.

Methods for analyzing and developing energy systems are critical for enabling efficient and... (More)
Recent technological advancements have led to the creation of highly specialized systems across various industries, enabling tasks that were once beyond imagination. As the global demand for sustainable and efficient energy solutions grows, the urgency for innovation in technology has never been greater. These advancements are not simply incremental but represent transformative changes that are reshaping entire sectors. From the expansion of renewable energy sources like solar and wind to the improvement of traditional fossil fuel systems and nuclear power, technology is driving a more sustainable and efficient future.

Methods for analyzing and developing energy systems are critical for enabling efficient and sustainable alternatives to conventional energy production. Progress in optical diagnostics is essential for advancing such sustainable energy systems, especially as the global shift toward clean energy accelerates. These non-invasive techniques use photons to access difficult-to-reach areas without disrupting the system under investigation and can capture and quantify complex phenomena that conventional tools often miss. Conventional measurement techniques, while useful, often lack the spatial and temporal resolution needed to capture fine-scale phenomena in plasma and combustion environments. In contrast, laser diagnostics offer a higher degree of precision, allowing for the detection of rapid changes in temperature, pressure, and species concentrations with unparalleled detail. This specialized information is crucial for understanding the intricate dynamics within energy systems, making laser diagnostics indispensable for refining models and optimizing system performance. The ability to measure and optimize performance in real-time without compromising system integrity is increasingly vital. Hence, further study of these techniques is essential to push the boundaries of what is currently achievable in energy research. 

These innovative measurement techniques are more than just tools for analysis; they are catalysts for further innovation. By providing detailed insights into the performance and efficiency of new technologies, they enable researchers and engineers to refine and improve these systems, pushing the boundaries of possibility. Thus, measurement techniques play a dual role: validating current advancements and laying the groundwork for future breakthroughs.

This work utilizes laser diagnostics to investigate the temporal response of laser induced signals, allowing for the determination of temperature and relative number densities. The work presented here contributes to the advancement of sustainable energy systems by applying and developing laser diagnostic techniques to improve the efficiency of hydrogen-powered gas turbines. The transition to hydrogen as a fuel source is crucial for reducing carbon emissions and mitigating climate change, but it requires precise control and a deep understanding of combustion processes. In this research, laser diagnostics are used to develop and characterize thermographic phosphors for inline temperature measurements within these hydrogen turbines, aiding optimization and minimizing environmental impact.

Advanced laser and optical measurement techniques are proving invaluable in the study of non-thermal plasmas, or cold plasmas, which are increasingly utilized in various industrial processes due to their ability to initiate chemical reactions at low temperatures. This capability is particularly beneficial in fields such as combustion control, pollution control, surface treatment, and medical applications. However, accurately measuring the physical properties of these plasmas such as electron density, temperature, and chemical composition remains challenging due to their dynamic and non-equilibrium nature. To address these challenges, advanced laser diagnostic techniques, including fluorescence imaging and 3D tomography, have been employed to study gliding arcs, a type of non-thermal plasma with significant potential in environmental and energy applications. These techniques provide detailed insights into the behavior and characteristics of gliding arcs, enabling further optimization of these systems. Additionally, photofragmentation laser-induced fluorescence has been used to study methyl radicals in a Dielectric Barrier Discharge (DBD) reactor, a widely used tool in plasma chemistry. This method allows for the selective and sensitive detection of methyl radicals, offering deeper insights into the chemical processes within DBD reactors and contributing to the development of more efficient and sustainable industrial practices.

Together, these innovations in laser diagnostics and optical measurement techniques are not only pushing the frontiers of scientific understanding but are also directly contributing to the development of future energy systems. These systems promise to be more efficient, sustainable, and capable of meeting the global energy challenges of the coming decades.
(Less)
Abstract (Swedish)
De senaste teknologiska framstegen har lett till skapandet av högspecialiserade system inom olika industrier, vilket möjliggör uppgifter som tidigare varit otänkbara. I takt med att den globala efterfrågan på hållbara och effektiva energilösningar ökar, har behovet av innovation inom teknik aldrig varit större. Dessa framsteg representerar transformativa förändringar som omformar hela sektorer. Från utbyggnaden av förnybara energikällor som sol- och vindenergi till förbättringen av traditionella fossila bränslesystem och kärnkraft, driver teknologin en mer hållbar och effektiv framtid.

Metoder för att analysera och utveckla energisystem är avgörande för att möjliggöra effektiva och hållbara alternativ till konventionell... (More)
De senaste teknologiska framstegen har lett till skapandet av högspecialiserade system inom olika industrier, vilket möjliggör uppgifter som tidigare varit otänkbara. I takt med att den globala efterfrågan på hållbara och effektiva energilösningar ökar, har behovet av innovation inom teknik aldrig varit större. Dessa framsteg representerar transformativa förändringar som omformar hela sektorer. Från utbyggnaden av förnybara energikällor som sol- och vindenergi till förbättringen av traditionella fossila bränslesystem och kärnkraft, driver teknologin en mer hållbar och effektiv framtid.

Metoder för att analysera och utveckla energisystem är avgörande för att möjliggöra effektiva och hållbara alternativ till konventionell energiproduktion. Framsteg inom optisk diagnostik är viktiga för att främja sådana hållbara energisystem, särskilt när den globala övergången till ren energi accelererar. Dessa icke-invasiva tekniker använder fotoner för att komma åt svåråtkomliga områden utan att störa systemet som undersöks, och de kan fånga och kvantifiera komplexa fenomen som konventionella verktyg ofta missar. Konventionella mättekniker, även om de är användbara, saknar ofta den rumsliga och tidsmässiga upplösning som krävs för att fånga småskaliga fenomen i plasma- och förbränningsmiljöer. Laserdiagnostik, å andra sidan, erbjuder en högre grad av precision, vilket gör det möjligt att upptäcka snabba förändringar i temperatur, tryck och koncentrationer av ämnen med oöverträffad upplösning. Den här specialiserade informationen är avgörande för att förstå de komplexa dynamikerna inom energisystem, vilket gör laserdiagnostik är ett viktigt verktyg för att förfina modeller och optimera systemens prestanda. Förmågan att mäta och optimera prestanda i realtid utan att kompromissa systemets integritet blir allt viktigare. Därför är vidare studier av dessa tekniker nödvändiga för att driva gränserna vidare för vad som för närvarande är möjligt inom energiforskning.

Dessa innovativa mättekniker är mer än bara analysverktyg; de fungerar som katalysatorer för ytterligare innovation. Genom att tillhandahålla detaljerade insikter i prestanda och effektivitet hos nya teknologier gör de det möjligt för forskare och ingenjörer att förfina och förbättra dessa system, vilket driver gränserna för vad som är möjligt. Således spelar mättekniker en dubbel roll: de validerar nuvarande framsteg och lägger grunden för framtida genombrott.

Detta arbete använder laserdiagnostik för att undersöka den temporala responsen hos laser inducerade signaler, vilket möjliggör bestämning av temperatur och relativa antaldensiteter. Arbetet som presenteras här bidrar till utvecklingen av hållbara energisystem genom att tillämpa och utveckla laserdiagnostiska tekniker för att förbättra effektiviteten hos vätgasdrivna gasturbiner. Övergången till vätgas som bränslekälla är avgörande för att minska koldioxidutsläppen och mildra klimatförändringarna, men det kräver exakt kontroll och djup förståelse av förbränningsprocesser. I denna forskning används laserdiagnostik för att utveckla och karakterisera termografiska fosforer för inline-temperaturmätningar inom dessa väte-turbiner, vilket bidrar till optimering och minimering av miljöpåverkan.

Avancerade laser- och optiska mättekniker visar sig ovärderliga i studier av icke-termiska plasman, eller kalla plasman, som alltmer används i olika industriella processer på grund av deras förmåga att initiera kemiska reaktioner vid låga temperaturer. Denna kapacitet är särskilt fördelaktig inom områden som förbränningskontroll, föroreningskontroll, och ytbehandling. Dock är det svårt att noggrant mäta de fysiska egenskaperna hos dessa plasman – såsom elektrondensitet, temperatur och kemisk sammansättning – på grund av deras dynamiska och icke-jämviktskaraktär. För att hantera dessa utmaningar har avancerade laserdiagnostiska tekniker, inklusive fluorescensavbildning och 3D-tomografi, använts för att studera glidbågar, en typ av icke-termiskt plasma med stor potential inom miljö- och energiområden. Dessa tekniker ger detaljerade insikter i glidbågarnas beteende och egenskaper, vilket möjliggör ytterligare optimering av dessa system. Dessutom har fotofragmentering-laserinducerad fluorescens använts för att studera metylradikaler i endielektrisk barriär urladdnings reaktor (DBD-reaktor), ett verktyg som ofta används inom plasmakemi. Denna metod möjliggör selektiv och känslig detektion av metylradikaler, vilket ger djupare insikter i de kemiska processerna inom DBD-reaktorer och bidrar till utvecklingen av mer effektiva och hållbara industriella tillämpningar.

Tillsammans driver dessa innovationer inom laserdiagnostik och optiska mättekniker inte bara gränserna för vetenskaplig förståelse, utan bidrar också direkt till utvecklingen av framtidens energisystem. Dessa system lovar att vara mer effektiva, hållbara och kapabla att möta de globala energifrågorna under de kommande decennierna. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr. Ombrello, Timothy, Wright-Patterson Air Force Base, USA.
organization
alternative title
Framsteg inom laserinducerade livstidsmätningar för förbrännings- och plasmastudier
publishing date
type
Thesis
publication status
published
subject
keywords
Fluorescence lifetime imaging, Phosphor Thermometry, Plasma, Discharges, Laser Diagnostics, Tomography, Quenching Correction, Fluorescence lifetime imaging, Phosphor Thermometry, Plasma, Discharges, Laser Diagnostics, Tomography, Quenching Correction, Fysicumarkivet:A:2024:Nilsson
pages
144 pages
publisher
Department of Physics, Lund University
defense location
Lecture Hall Rydbergsalen, Department of Physics, Professorsgatan 1, Faculty of Engineering LTH, Lund University, Lund.
defense date
2024-11-29 09:00:00
ISBN
978-91-8104-197-2
978-91-8104-198-9
project
Advanced Laser Diagnostics for Discharge Plasma
HYdrogen as a FLEXible energy storage for a fully renewable European POWER system
Experimentell utveckling av plasmareformering av CO2 och CH4
language
English
LU publication?
yes
id
4a2676cf-d3c8-4dc5-be24-37b25e7f8f79
date added to LUP
2024-10-29 13:42:23
date last changed
2025-05-28 11:05:09
@phdthesis{4a2676cf-d3c8-4dc5-be24-37b25e7f8f79,
  abstract     = {{<div>Recent technological advancements have led to the creation of highly specialized systems across various industries, enabling tasks that were once beyond imagination. As the global demand for sustainable and efficient energy solutions grows, the urgency for innovation in technology has never been greater. These advancements are not simply incremental but represent transformative changes that are reshaping entire sectors. From the expansion of renewable energy sources like solar and wind to the improvement of traditional fossil fuel systems and nuclear power, technology is driving a more sustainable and efficient future.</div><div><br/></div><div>Methods for analyzing and developing energy systems are critical for enabling efficient and sustainable alternatives to conventional energy production. Progress in optical diagnostics is essential for advancing such sustainable energy systems, especially as the global shift toward clean energy accelerates. These non-invasive techniques use photons to access difficult-to-reach areas without disrupting the system under investigation and can capture and quantify complex phenomena that conventional tools often miss. Conventional measurement techniques, while useful, often lack the spatial and temporal resolution needed to capture fine-scale phenomena in plasma and combustion environments. In contrast, laser diagnostics offer a higher degree of precision, allowing for the detection of rapid changes in temperature, pressure, and species concentrations with unparalleled detail. This specialized information is crucial for understanding the intricate dynamics within energy systems, making laser diagnostics indispensable for refining models and optimizing system performance. The ability to measure and optimize performance in real-time without compromising system integrity is increasingly vital. Hence, further study of these techniques is essential to push the boundaries of what is currently achievable in energy research. </div><div><br/></div><div>These innovative measurement techniques are more than just tools for analysis; they are catalysts for further innovation. By providing detailed insights into the performance and efficiency of new technologies, they enable researchers and engineers to refine and improve these systems, pushing the boundaries of possibility. Thus, measurement techniques play a dual role: validating current advancements and laying the groundwork for future breakthroughs.</div><div><br/></div><div>This work utilizes laser diagnostics to investigate the temporal response of laser induced signals, allowing for the determination of temperature and relative number densities. The work presented here contributes to the advancement of sustainable energy systems by applying and developing laser diagnostic techniques to improve the efficiency of hydrogen-powered gas turbines. The transition to hydrogen as a fuel source is crucial for reducing carbon emissions and mitigating climate change, but it requires precise control and a deep understanding of combustion processes. In this research, laser diagnostics are used to develop and characterize thermographic phosphors for inline temperature measurements within these hydrogen turbines, aiding optimization and minimizing environmental impact.</div><div><br/></div><div>Advanced laser and optical measurement techniques are proving invaluable in the study of non-thermal plasmas, or cold plasmas, which are increasingly utilized in various industrial processes due to their ability to initiate chemical reactions at low temperatures. This capability is particularly beneficial in fields such as combustion control, pollution control, surface treatment, and medical applications. However, accurately measuring the physical properties of these plasmas such as electron density, temperature, and chemical composition remains challenging due to their dynamic and non-equilibrium nature. To address these challenges, advanced laser diagnostic techniques, including fluorescence imaging and 3D tomography, have been employed to study gliding arcs, a type of non-thermal plasma with significant potential in environmental and energy applications. These techniques provide detailed insights into the behavior and characteristics of gliding arcs, enabling further optimization of these systems. Additionally, photofragmentation laser-induced fluorescence has been used to study methyl radicals in a Dielectric Barrier Discharge (DBD) reactor, a widely used tool in plasma chemistry. This method allows for the selective and sensitive detection of methyl radicals, offering deeper insights into the chemical processes within DBD reactors and contributing to the development of more efficient and sustainable industrial practices.</div><div><br/></div><div>Together, these innovations in laser diagnostics and optical measurement techniques are not only pushing the frontiers of scientific understanding but are also directly contributing to the development of future energy systems. These systems promise to be more efficient, sustainable, and capable of meeting the global energy challenges of the coming decades.</div>}},
  author       = {{Nilsson, Sebastian}},
  isbn         = {{978-91-8104-197-2}},
  keywords     = {{Fluorescence lifetime imaging; Phosphor Thermometry; Plasma; Discharges; Laser Diagnostics; Tomography; Quenching Correction; Fluorescence lifetime imaging; Phosphor Thermometry; Plasma; Discharges; Laser Diagnostics; Tomography; Quenching Correction; Fysicumarkivet:A:2024:Nilsson}},
  language     = {{eng}},
  month        = {{11}},
  publisher    = {{Department of Physics, Lund University}},
  school       = {{Lund University}},
  title        = {{Advancements in Laser-Induced Lifetime Measurements for Combustion and Plasma Studies}},
  url          = {{https://lup.lub.lu.se/search/files/202588087/Sebastian_Nilsson_Short_-_WEBB.pdf}},
  year         = {{2024}},
}