Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Control of Dy 164 Bose-Einstein condensate phases and dynamics with dipolar anisotropy

Halder, S. ; Mukherjee, K. LU ; Mistakidis, S. I. ; Das, S. ; Kevrekidis, P. G. ; Panigrahi, P. K. ; Majumder, S. and Sadeghpour, H. R. (2022) In Physical Review Research 4(4).
Abstract

We investigate the quench dynamics of quasi-one- and two-dimensional dipolar Bose-Einstein condensates of Dy164 atoms under the influence of a fast rotating magnetic field. The magnetic field thus controls both the magnitude and sign of the dipolar potential. We account for quantum fluctuations, critical to formation of exotic quantum droplet and supersolid phases in the extended Gross-Pitaevskii formalism, which includes the so-called Lee-Huang-Yang correction. An analytical variational ansatz allows us to obtain the phase diagrams of the superfluid and droplet phases. The crossover from the superfluid to the supersolid phase and to single and droplet arrays is probed with particle number and dipolar interaction. The dipolar strength... (More)

We investigate the quench dynamics of quasi-one- and two-dimensional dipolar Bose-Einstein condensates of Dy164 atoms under the influence of a fast rotating magnetic field. The magnetic field thus controls both the magnitude and sign of the dipolar potential. We account for quantum fluctuations, critical to formation of exotic quantum droplet and supersolid phases in the extended Gross-Pitaevskii formalism, which includes the so-called Lee-Huang-Yang correction. An analytical variational ansatz allows us to obtain the phase diagrams of the superfluid and droplet phases. The crossover from the superfluid to the supersolid phase and to single and droplet arrays is probed with particle number and dipolar interaction. The dipolar strength is tuned by rotating the magnetic field with subsequent effects on phase boundaries. Following interaction quenches across the aforementioned phases, we monitor the dynamical formation of supersolid clusters or droplet lattices. We include losses due to three-body recombination over the crossover regime, where the three-body recombination rate coefficient scales with the fourth power of the scattering length (as) or the dipole length (add). For fixed values of the dimensionless parameter, ϵdd=add/as, tuning the dipolar anisotropy leads to an enhancement of the droplet lifetimes.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review Research
volume
4
issue
4
article number
043124
publisher
American Physical Society
external identifiers
  • scopus:85144630383
ISSN
2643-1564
DOI
10.1103/PhysRevResearch.4.043124
language
English
LU publication?
yes
id
4ae9e78a-caba-4a53-8271-e0c027f70ed7
date added to LUP
2023-01-11 16:57:01
date last changed
2024-03-26 11:35:17
@article{4ae9e78a-caba-4a53-8271-e0c027f70ed7,
  abstract     = {{<p>We investigate the quench dynamics of quasi-one- and two-dimensional dipolar Bose-Einstein condensates of Dy164 atoms under the influence of a fast rotating magnetic field. The magnetic field thus controls both the magnitude and sign of the dipolar potential. We account for quantum fluctuations, critical to formation of exotic quantum droplet and supersolid phases in the extended Gross-Pitaevskii formalism, which includes the so-called Lee-Huang-Yang correction. An analytical variational ansatz allows us to obtain the phase diagrams of the superfluid and droplet phases. The crossover from the superfluid to the supersolid phase and to single and droplet arrays is probed with particle number and dipolar interaction. The dipolar strength is tuned by rotating the magnetic field with subsequent effects on phase boundaries. Following interaction quenches across the aforementioned phases, we monitor the dynamical formation of supersolid clusters or droplet lattices. We include losses due to three-body recombination over the crossover regime, where the three-body recombination rate coefficient scales with the fourth power of the scattering length (as) or the dipole length (add). For fixed values of the dimensionless parameter, ϵdd=add/as, tuning the dipolar anisotropy leads to an enhancement of the droplet lifetimes.</p>}},
  author       = {{Halder, S. and Mukherjee, K. and Mistakidis, S. I. and Das, S. and Kevrekidis, P. G. and Panigrahi, P. K. and Majumder, S. and Sadeghpour, H. R.}},
  issn         = {{2643-1564}},
  language     = {{eng}},
  number       = {{4}},
  publisher    = {{American Physical Society}},
  series       = {{Physical Review Research}},
  title        = {{Control of Dy 164 Bose-Einstein condensate phases and dynamics with dipolar anisotropy}},
  url          = {{http://dx.doi.org/10.1103/PhysRevResearch.4.043124}},
  doi          = {{10.1103/PhysRevResearch.4.043124}},
  volume       = {{4}},
  year         = {{2022}},
}