Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Photophysics and photochemistry of iron carbene complexes for solar energy conversion and photocatalysis

Lindh, Linnea LU orcid ; Chábera, Pavel LU ; Rosemann, Nils W. LU ; Uhlig, Jens LU ; Wärnmark, Kenneth LU ; Yartsev, Arkady LU orcid ; Sundström, Villy LU and Persson, Petter LU (2020) In Catalysts 10(3).
Abstract

Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range... (More)

Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Artificial photosynthesis, Dye-sensitized solar cells, Iron, N-heterocyclic carbene (NHC), Photocatalysis, Photochemistry, Photophysics, Solar energy conversion, Solar fuels
in
Catalysts
volume
10
issue
3
article number
315
publisher
MDPI AG
external identifiers
  • scopus:85081559760
ISSN
2073-4344
DOI
10.3390/catal10030315
language
English
LU publication?
yes
id
4de35813-cad8-40cf-807a-8b525e082aad
date added to LUP
2020-04-01 17:02:04
date last changed
2023-11-20 02:10:40
@article{4de35813-cad8-40cf-807a-8b525e082aad,
  abstract     = {{<p>Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.</p>}},
  author       = {{Lindh, Linnea and Chábera, Pavel and Rosemann, Nils W. and Uhlig, Jens and Wärnmark, Kenneth and Yartsev, Arkady and Sundström, Villy and Persson, Petter}},
  issn         = {{2073-4344}},
  keywords     = {{Artificial photosynthesis; Dye-sensitized solar cells; Iron; N-heterocyclic carbene (NHC); Photocatalysis; Photochemistry; Photophysics; Solar energy conversion; Solar fuels}},
  language     = {{eng}},
  month        = {{03}},
  number       = {{3}},
  publisher    = {{MDPI AG}},
  series       = {{Catalysts}},
  title        = {{Photophysics and photochemistry of iron carbene complexes for solar energy conversion and photocatalysis}},
  url          = {{http://dx.doi.org/10.3390/catal10030315}},
  doi          = {{10.3390/catal10030315}},
  volume       = {{10}},
  year         = {{2020}},
}