Graph Laplacians and Topology
(2008) In Arkiv för Matematik 46(1). p.95-111- Abstract
- Laplace operators on metric graphs are considered. It is proven that for compact graphs the spectrum of the Laplace operator determines the total length, the number of connected components, and the Euler characteristic. For a class of non-compact graphs the same characteristics are determined by the scattering data consisting of the scattering matrix and the discrete eigenvalues.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/758113
- author
- Kurasov, Pavel LU
- organization
- publishing date
- 2008
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Arkiv för Matematik
- volume
- 46
- issue
- 1
- pages
- 95 - 111
- publisher
- Springer
- external identifiers
-
- wos:000253211300007
- scopus:39349108317
- ISSN
- 0004-2080
- DOI
- 10.1007/s11512-007-0059-4
- language
- English
- LU publication?
- yes
- id
- 581fabdb-cd8c-44d9-9977-a3937af533b7 (old id 758113)
- alternative location
- http://www.springerlink.com/content/d428304272rxp17h/fulltext.pdf
- date added to LUP
- 2016-04-01 11:59:53
- date last changed
- 2022-04-05 08:06:52
@article{581fabdb-cd8c-44d9-9977-a3937af533b7, abstract = {{Laplace operators on metric graphs are considered. It is proven that for compact graphs the spectrum of the Laplace operator determines the total length, the number of connected components, and the Euler characteristic. For a class of non-compact graphs the same characteristics are determined by the scattering data consisting of the scattering matrix and the discrete eigenvalues.}}, author = {{Kurasov, Pavel}}, issn = {{0004-2080}}, language = {{eng}}, number = {{1}}, pages = {{95--111}}, publisher = {{Springer}}, series = {{Arkiv för Matematik}}, title = {{Graph Laplacians and Topology}}, url = {{http://dx.doi.org/10.1007/s11512-007-0059-4}}, doi = {{10.1007/s11512-007-0059-4}}, volume = {{46}}, year = {{2008}}, }