Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A numerical study of mixing phenomena and reaction front propagation in partially premixed combustion engines

Ibron, Christian LU (2019)
Abstract
This work treats the modelling of PPC engine combustion through 3D computational fluid dynamics. In order to develop a cost-effective CFD model for the design and performance analysis of PPC engines it is important to first understand the multiple modes of combustion in PPC engines, e.g., the onset of the first ignition kernels, the propagation of the ignition/flame fronts, and the effect of charge stratification on the combustion process. To this end the mixing process and incylinder turbulent flow are studied in the first part of the thesis. The results of the study, which are covered in papers I and III, show that the swirling flow structure generated in the intake stroke loses non-axial components in later stages, which supports the... (More)
This work treats the modelling of PPC engine combustion through 3D computational fluid dynamics. In order to develop a cost-effective CFD model for the design and performance analysis of PPC engines it is important to first understand the multiple modes of combustion in PPC engines, e.g., the onset of the first ignition kernels, the propagation of the ignition/flame fronts, and the effect of charge stratification on the combustion process. To this end the mixing process and incylinder turbulent flow are studied in the first part of the thesis. The results of the study, which are covered in papers I and III, show that the swirling flow structure generated in the intake stroke loses non-axial components in later stages, which supports the use of sector mesh in the combustion stroke CFD simulations. The sector simulations show similar behaviour in terms of spray induced momentum and fuel distribution compared to a full cylinder simulation as long as the mixing occurs far from the cylinder center. In the second part of the thesis, CFD simulations of the combustion process are performed, based on a direct coupling of the finite rate chemistry with the flow transport. Different models for turbulence/chemistry interaction are considered; the model based on well-stirred reactors and partially stirred reactors, and the model based on transported probability density function within the Eulerian Stochastic Fields (PDF-ESF). These models are used to analyse the mixed mode combustion process in an experimental PPC engine. The LES models are shown to be able to resolve sufficient scalar stratification to properly represent the combustion phasing of the ignition front combustion mode. While the LES-ESF shows better predictions of the required inlet temperatures, the model is computational more demanding than the well-stirred/partially stirred reactor models – the computational time increases with the number of stochastic fields. (Less)
Abstract (Swedish)
Avhandlingsarbetet studerar hur turbulent flödesstruktur sammverkar med förbränning av högoktaniga bränslen i partiellt förblandade förhållanden genom numeriska tredimensionella flödessimuleringar. Förbränningsmoder och antändningsprocesser studeras för två olika typfall där ett flertal metoder testas med ändamålet att korrekt återge hur icke upplöst rörelsemängd växelverkar med de kemiska processerna. Resultaten visar att en antändningsdominerad och lokalt mager förbränningsprocess kan modelleras utan hänsyn till sammverkarn mellan oupplöst turbulens och kemi så länge antädningsfronten är en dominant förbränningsmod. Vidare visas att andändningsfrontens beteende är starkt kopplat till hur väl representerad stratifikationen av de... (More)
Avhandlingsarbetet studerar hur turbulent flödesstruktur sammverkar med förbränning av högoktaniga bränslen i partiellt förblandade förhållanden genom numeriska tredimensionella flödessimuleringar. Förbränningsmoder och antändningsprocesser studeras för två olika typfall där ett flertal metoder testas med ändamålet att korrekt återge hur icke upplöst rörelsemängd växelverkar med de kemiska processerna. Resultaten visar att en antändningsdominerad och lokalt mager förbränningsprocess kan modelleras utan hänsyn till sammverkarn mellan oupplöst turbulens och kemi så länge antädningsfronten är en dominant förbränningsmod. Vidare visas att andändningsfrontens beteende är starkt kopplat till hur väl representerad stratifikationen av de transporterade skalärerna är. Vidare studeras uppkomst av flödesstrukturer som inte är symmetriska kring kolvens rörelseaxel samt hur vilka konsekvenser för stratifikation av som följer om sådant flöde förenklas med periodiska antaganden. Resultaten visar att beroende på geometriska parametrar samt hur nära insprutningstiden och förbränningstiden är så kan antagandena vara goda. Även påvarkan av turbulenta initialförhållanden studeras, men här visar slutsatserna att resultaten domineras av den rörelsemängd som uppkommer vid insprutning, dvs initialvillkoren är inte avgörande för slutresultaten. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr. Mura, Arnaud P., Institut Pprime, France.
organization
publishing date
type
Thesis
publication status
published
subject
keywords
CFD simulation, förbränning, antändning
pages
82 pages
publisher
Department of Energy Sciences, Lund University
defense location
Lecture hall B, building M, Ole Römers väg 1, Faculty of Engineering LTH, Lund University, Lund.
defense date
2019-12-13 10:15:00
ISSN
0282-1990
ISBN
978-91-7895-322-6
978-91-7895-323-3
project
KCFP, Closed-Loop Combustion Control
language
English
LU publication?
yes
id
5e8c8f8b-5ad9-4b96-9e78-87d2b5775793
date added to LUP
2019-11-18 14:25:09
date last changed
2019-11-20 15:34:16
@phdthesis{5e8c8f8b-5ad9-4b96-9e78-87d2b5775793,
  abstract     = {{This work treats the modelling of PPC engine combustion through 3D computational fluid dynamics. In order to develop a cost-effective CFD model for the design and performance analysis of PPC engines it is important to first understand the multiple modes of combustion in PPC engines, e.g., the onset of the first ignition kernels, the propagation of the ignition/flame fronts, and the effect of charge stratification on the combustion process. To this end the mixing process and incylinder turbulent flow are studied in the first part of the thesis. The results of the study, which are covered in papers I and III, show that the swirling flow structure generated in the intake stroke loses non-axial components in later stages, which supports the use of sector mesh in the combustion stroke CFD simulations. The sector simulations show similar behaviour in terms of spray induced momentum and fuel distribution compared to a full cylinder simulation as long as the mixing occurs far from the cylinder center. In the second part of the thesis, CFD simulations of the combustion process are performed, based on a direct coupling of the finite rate chemistry with the flow transport. Different models for turbulence/chemistry interaction are considered; the model based on well-stirred reactors and partially stirred reactors, and the model based on transported probability density function within the Eulerian Stochastic Fields (PDF-ESF). These models are used to analyse the mixed mode combustion process in an experimental PPC engine. The LES models are shown to be able to resolve sufficient scalar stratification to properly represent the combustion phasing of the ignition front combustion mode.  While the LES-ESF shows better predictions of the required inlet temperatures, the model is computational more demanding than the well-stirred/partially stirred reactor models – the computational time increases with the number of stochastic fields.}},
  author       = {{Ibron, Christian}},
  isbn         = {{978-91-7895-322-6}},
  issn         = {{0282-1990}},
  keywords     = {{CFD simulation; förbränning; antändning}},
  language     = {{eng}},
  month        = {{11}},
  publisher    = {{Department of Energy Sciences, Lund University}},
  school       = {{Lund University}},
  title        = {{A numerical study of mixing phenomena and reaction front propagation in partially premixed combustion engines}},
  url          = {{https://lup.lub.lu.se/search/files/71967879/ibron_e_spik_ex.pdf}},
  year         = {{2019}},
}