Diblock polyampholytes grafted onto spherical particles: Effect of stiffness, charge density, and grafting density
(2007) In Langmuir 23(3). p.1465-1472- Abstract
- The structure of spherical brushes formed by symmetric diblock polyampholytes end-grafted onto small spherical particles in aqueous solution is examined within the framework of the so-called primitive model using Monte Carlo simulations. The properties of the two blocks are identical except for the sign of their charges. Three different chain flexibilities corresponding to flexible, semiflexible, and stiff blocks are considered at various polyampholyte linear charge densities and grafting densities. The link between the two blocks is flexible at all conditions, and the grafted segments are laterally mobile. Radial and lateral spatial distribution functions of different types and single-chain properties are analyzed. The brush structure... (More)
- The structure of spherical brushes formed by symmetric diblock polyampholytes end-grafted onto small spherical particles in aqueous solution is examined within the framework of the so-called primitive model using Monte Carlo simulations. The properties of the two blocks are identical except for the sign of their charges. Three different chain flexibilities corresponding to flexible, semiflexible, and stiff blocks are considered at various polyampholyte linear charge densities and grafting densities. The link between the two blocks is flexible at all conditions, and the grafted segments are laterally mobile. Radial and lateral spatial distribution functions of different types and single-chain properties are analyzed. The brush structure strongly depends on the chain flexibility. With flexible chains, a disordered polyelectrolyte complex is formed at the surface of the particle, the complex becoming more compact at increasing linear charge density. With stiff blocks, the inner blocks are radially oriented. At low linear charged density, the outer blocks are orientationally disordered, whereas at increasing electrostatic interaction the two blocks of a polyampholyte are parallel and close to each other, leading to an ordered structure referred to as a polyampholyte star. As the grafting density is increased, the brush thickness responds differently for flexible and nonflexible chains, depending on a different balance between electrostatic interactions and excluded volume effects. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/676120
- author
- Akinchina, Anna LU and Linse, Per LU
- organization
- publishing date
- 2007
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Langmuir
- volume
- 23
- issue
- 3
- pages
- 1465 - 1472
- publisher
- The American Chemical Society (ACS)
- external identifiers
-
- wos:000243684100080
- scopus:33847191785
- pmid:17241074
- ISSN
- 0743-7463
- DOI
- 10.1021/la062481r
- language
- English
- LU publication?
- yes
- id
- 0b275b81-2669-4994-a8c7-0d0c9a51d5d5 (old id 676120)
- alternative location
- http://cat.inist.fr/?aModele=afficheN&cpsidt=18473228
- date added to LUP
- 2016-04-01 12:33:20
- date last changed
- 2022-01-27 06:44:01
@article{0b275b81-2669-4994-a8c7-0d0c9a51d5d5, abstract = {{The structure of spherical brushes formed by symmetric diblock polyampholytes end-grafted onto small spherical particles in aqueous solution is examined within the framework of the so-called primitive model using Monte Carlo simulations. The properties of the two blocks are identical except for the sign of their charges. Three different chain flexibilities corresponding to flexible, semiflexible, and stiff blocks are considered at various polyampholyte linear charge densities and grafting densities. The link between the two blocks is flexible at all conditions, and the grafted segments are laterally mobile. Radial and lateral spatial distribution functions of different types and single-chain properties are analyzed. The brush structure strongly depends on the chain flexibility. With flexible chains, a disordered polyelectrolyte complex is formed at the surface of the particle, the complex becoming more compact at increasing linear charge density. With stiff blocks, the inner blocks are radially oriented. At low linear charged density, the outer blocks are orientationally disordered, whereas at increasing electrostatic interaction the two blocks of a polyampholyte are parallel and close to each other, leading to an ordered structure referred to as a polyampholyte star. As the grafting density is increased, the brush thickness responds differently for flexible and nonflexible chains, depending on a different balance between electrostatic interactions and excluded volume effects.}}, author = {{Akinchina, Anna and Linse, Per}}, issn = {{0743-7463}}, language = {{eng}}, number = {{3}}, pages = {{1465--1472}}, publisher = {{The American Chemical Society (ACS)}}, series = {{Langmuir}}, title = {{Diblock polyampholytes grafted onto spherical particles: Effect of stiffness, charge density, and grafting density}}, url = {{http://dx.doi.org/10.1021/la062481r}}, doi = {{10.1021/la062481r}}, volume = {{23}}, year = {{2007}}, }