Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel : Model calibration and validation

Wu, Mousong LU ; Zhao, Qiang ; Jansson, Per Erik ; Wu, Jingwei ; Tan, Xiao ; Duan, Zheng LU ; Wang, Kang ; Chen, Peng LU ; Zheng, Minjie LU and Huang, Jiesheng , et al. (2021) In Journal of Hydrology 596.
Abstract

Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The... (More)

Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Freezing point depression, Saline soil, Seasonal frost, Sensitivity analysis, Soil hydrology
in
Journal of Hydrology
volume
596
article number
125693
publisher
Elsevier
external identifiers
  • scopus:85095847222
ISSN
0022-1694
DOI
10.1016/j.jhydrol.2020.125693
language
English
LU publication?
yes
id
704c7da7-f804-48af-a663-19bf9d3863fe
date added to LUP
2020-11-27 09:12:16
date last changed
2022-04-26 22:10:29
@article{704c7da7-f804-48af-a663-19bf9d3863fe,
  abstract     = {{<p>Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management.</p>}},
  author       = {{Wu, Mousong and Zhao, Qiang and Jansson, Per Erik and Wu, Jingwei and Tan, Xiao and Duan, Zheng and Wang, Kang and Chen, Peng and Zheng, Minjie and Huang, Jiesheng and Zhang, Wenxin}},
  issn         = {{0022-1694}},
  keywords     = {{Freezing point depression; Saline soil; Seasonal frost; Sensitivity analysis; Soil hydrology}},
  language     = {{eng}},
  month        = {{05}},
  publisher    = {{Elsevier}},
  series       = {{Journal of Hydrology}},
  title        = {{Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel : Model calibration and validation}},
  url          = {{http://dx.doi.org/10.1016/j.jhydrol.2020.125693}},
  doi          = {{10.1016/j.jhydrol.2020.125693}},
  volume       = {{596}},
  year         = {{2021}},
}