Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

On the Growth of Bone through Stress Driven Diffusion and Bone Generation Processes

Lindberg, Gustav LU orcid (2018)
Abstract
In order to prevent or modify bone degeneration due to rest or due to diseases such as osteopenia and osteoporosis, the modeling and remodeling of bone tissue must be better understood. In this thesis it is assumed that the primary condition leading to bone growth is a change of the chemical environment caused by transport of matter resulting from stress driven diffusion. The change in the chemical environment may consist of changes in the concentration of different substances stimulating, for example, bone building osteoblast recruitment or suppression of bone resorbing osteoclast activity. Inspired by a study found in the literature where an experiment is performed on avian bones, two numerical models are developed which can be solved... (More)
In order to prevent or modify bone degeneration due to rest or due to diseases such as osteopenia and osteoporosis, the modeling and remodeling of bone tissue must be better understood. In this thesis it is assumed that the primary condition leading to bone growth is a change of the chemical environment caused by transport of matter resulting from stress driven diffusion. The change in the chemical environment may consist of changes in the concentration of different substances stimulating, for example, bone building osteoblast recruitment or suppression of bone resorbing osteoclast activity. Inspired by a study found in the literature where an experiment is performed on avian bones, two numerical models are developed which can be solved using a regular structural finite element solver. The first model acknowledges that diffusion of matter is affected by the gradient of external potential energies such as heat, electrical or mechanical, of which the mechanical is assumed to be important. The derivation of the statistical mechanics of the molecular diffusing matter leads, according to Einstein (1905), to a partial differential equation similar to Fick’s law but with an added diffusio-mechanical coupling term. The diffusio-mechanical term is a function of the hydrostatic pressure due to bending of the bone. Since bone growth takes place at the outer bone surface, the hypothesis is that substances promoting bone growth are transported from the medullary
cavity to the outer surface, the periosteum, of the long skeletal bone. From comparison with experiments, it is found that bone growth to a higher extent takes place where high concentration of matter arises rather than where the mechanical stress is high. It is also seen that bone growth depends on load frequency. The second model also starts from the basic assumptions made in the first model regarding the preservation of energy. To derive the governing coupled diffusio-mechanical partial differential equations, the matter
required for the generation of bone is assumed to be transported easily through the bone or surrounding fluids. Therefore, to simplify the analysis, the governing equations may be put on a non-conservative form. The Ginzburg-Landau theory is used to formulate the expression for the phase transformation like process for the generation of bone. The available energies are elastic strain energy due to bending, the concentration gradient energy and a chemical potential. The model uses a phase field variable to describe the state of the bone, and the model shows that high loading initiate bone growth whereas low loading makes the bone contract. The models use normalized input data, but in order to make full use of the results the actual diffusion coefficient of interest must be known,
and hence an approach to determine diffusion coefficient in bone tissue is developed. By means of conductivity measurements together with an analytical solution, which is fitted to the experimental data using a Kalman filter, diffusion coefficients can be extracted. With known diffusion coefficients it is possible to evaluate the normalized results from the numerical models. Finally a model to evaluate the physiological status of the bone by looking only at a small portion of the cross-section of a bone is presented. The approach uses the size and shape of the pores of a representative area of the bone crosssection
to determine a value of an effective diffusion coefficient of matter and an effective Young’s modulus of the bone. A database with parameters used in the method must be established once with finite element analysis. The model can then be used by anyone, and no knowledge of finite element analysis is required. The calculated values can be used to evaluate how much the porosity is affecting the bone status. (Less)
Abstract (Swedish)
För att bättre kunna förebygga att skelettet bryts ner vid långvarig vila eller vid sjukdomar
som osteopenia och osteoporos, behövs bättre förståelse för de processer som
styr detta. I den här avhandlingen antas att den primära orsaken till bentillväxt är en
förändring i den kemiska miljön i benet. Förändringen antas orsakas av att tillväxtstimulerande
ämnen transporteras genom benet till den plats där bentillväxt sedan sker.
Transporten sker genom spänningsdriven diffusion (spänning som i tryck och drag). De
tillväxtstimulerande ämnena tros påverka de celler som är involverade i uppbyggnad respektive
nedbrytning av ben, så som till exempel osteoblaster eller osteoklaster. Två numeriska
modeller utvecklas... (More)
För att bättre kunna förebygga att skelettet bryts ner vid långvarig vila eller vid sjukdomar
som osteopenia och osteoporos, behövs bättre förståelse för de processer som
styr detta. I den här avhandlingen antas att den primära orsaken till bentillväxt är en
förändring i den kemiska miljön i benet. Förändringen antas orsakas av att tillväxtstimulerande
ämnen transporteras genom benet till den plats där bentillväxt sedan sker.
Transporten sker genom spänningsdriven diffusion (spänning som i tryck och drag). De
tillväxtstimulerande ämnena tros påverka de celler som är involverade i uppbyggnad respektive
nedbrytning av ben, så som till exempel osteoblaster eller osteoklaster. Två numeriska
modeller utvecklas vilka är inspirerade av ett experiment, funnet i litteraturen,
där bentillväxt på grund av mekanisk last på vingben från fåglar undersöktes. Båda
modellerna kan lösas med en vanlig kommersiell finita element-lösare. Den första modellen
utgår ifrån det faktum att diffusion påverkas av extern potentiell energi så som från
värme, elektricitet eller mekanisk last. I denna avhandling antas den mekaniska lasten
vara viktig. Utifrån den statistiska mekaniken för diffusion fås, enligt Einstein (1905),
en differentialekvation som är snarlik Ficks första lag men med en kopplad diffusionsmekanisk
term. Denna är en funktion av den hydrostatiska spänningen som uppstår
vid böjning av benet. Eftersom bentillväxt sker vid utsidan på benet är hypotesen att
de växtstimulerande ämnena transporteras från det inre hålrummet i benet ut till utsidan
av benet (periosteum). Efter jämförelse med experiment ses att bentillväxt i större
utsträckning sker där koncentrationen av växtstimulerande ämnen är hög, än där spänningen
är hög. Det ses också att bentillväxten påverkas av lastfrekvensen. Den andra
modellen tar avstamp i de grundläggande antagandena angående bevarande av energi i
den första modellen. För att bestämma den styrande differentialekvationen antas att de
ämnen som krävs för bentillväxt kan transporteras genom benet eller från omkringliggande
vätskor. För att förenkla analysen blir den styrande ekvationen icke-konservativ.
Ginzburgs och Landaus teori används för att ta fram ett uttryck för den fasförändring i
modellen som ger bentillväxt. De tillgängliga energierna är elastisk energi på grund av
böjning, koncentrationsgradients-energin samt en kemisk potential. Modellen använder
sig av en fasfältsvariabel för att beskriva benet. Modellen visar att hög belastning ger
bentillväxt, medan låg last gör att benets tvärsnittsarea minskar. De numeriska modellerna
använder sig av normaliserade indata, men för att fullt ut kunna nyttja modellerna
behövs specifika värden på indata, bland annat värdet på diffusionskoefficienten. Därför
utvecklas en metod för att genom experiment kunna bestämma en diffusionskoefficients
värde. Genom ett konduktivitetsexperiment och en analytisk lösning, vilken anpassas
till det experimentella datat med hjälp av ett Kalman-filter, kan en diffusionskoefficient
bestämmas. Som det fjärde arbetet i den här avhandlingen presenteras en metod för
att kunna bestämma vilket hälsostatus ett ben har genom att bara studera en liten del
av ett tvärsnitt av benet. Metoden använder sig av den storlek och form som porerna
har i den studerade delen, som bedöms vara representativ för hela tvärsnittet. En effektiv
diffusionskoefficient räknas fram tillsammans med en effektiv elasticitetsmodul för
benet. Värdena på dessa kan användas för att bedöma hur mycket benet är påverkat
av porositeten. En databas med parametrar som behövs i metoden bestäms på förhand
med finita element metoden, sedan kan metoden användas av vem som helst, inga krav
på kunskaper i finita element eller andra numeriska metoder behövs. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Knothe Tate, Melissa, University of New South Wales, Australia
organization
publishing date
type
Thesis
publication status
published
subject
keywords
bone growth, Osteogenesis, Diffusion in bone, stress enhanced diffusion, Ginzburg-Landau, phase-field, diffusion experiment, Conductivity, Kalman filter, finite element method, Fourier series, Fick’s law, Osteology
pages
138 pages
publisher
Solid Mechanics, Faculty of Engineering, Lund University
defense location
Lecture hall M:E, M-building, Ole Römers väg 1, Lund University, Faculty of Engineering LTH.
defense date
2018-12-04 10:15:00
ISBN
978-91-7753-882-0
978-91-7753-881-3
language
English
LU publication?
yes
id
745ba461-40ff-4e6e-aad0-a8e39ea32749
date added to LUP
2018-10-30 21:02:23
date last changed
2018-11-21 21:42:53
@phdthesis{745ba461-40ff-4e6e-aad0-a8e39ea32749,
  abstract     = {{In order to prevent or modify bone degeneration due to rest or due to diseases such as osteopenia and osteoporosis, the modeling and remodeling of bone tissue must be better understood. In this thesis it is assumed that the primary condition leading to bone growth is a change of the chemical environment caused by transport of matter resulting from stress driven diffusion. The change in the chemical environment may consist of changes in the concentration of different substances stimulating, for example, bone building osteoblast recruitment or suppression of bone resorbing osteoclast activity. Inspired by a study found in the literature where an experiment is performed on avian bones, two numerical models are developed which can be solved using a regular structural finite element solver. The first model acknowledges that diffusion of matter is affected by the gradient of external potential energies such as heat, electrical or mechanical, of which the mechanical is assumed to be important. The derivation of the statistical mechanics of the molecular diffusing matter leads, according to Einstein (1905), to a partial differential equation similar to Fick’s law but with an added diffusio-mechanical coupling term. The diffusio-mechanical term is a function of the hydrostatic pressure due to bending of the bone. Since bone growth takes place at the outer bone surface, the hypothesis is that substances promoting bone growth are transported from the medullary<br/>cavity to the outer surface, the periosteum, of the long skeletal bone. From comparison with experiments, it is found that bone growth to a higher extent takes place where high concentration of matter arises rather than where the mechanical stress is high. It is also seen that bone growth depends on load frequency. The second model also starts from the basic assumptions made in the first model regarding the preservation of energy. To derive the governing coupled diffusio-mechanical partial differential equations, the matter<br/>required for the generation of bone is assumed to be transported easily through the bone or surrounding fluids. Therefore, to simplify the analysis, the governing equations may be put on a non-conservative form. The Ginzburg-Landau theory is used to formulate the expression for the phase transformation like process for the generation of bone. The available energies are elastic strain energy due to bending, the concentration gradient energy and a chemical potential. The model uses a phase field variable to describe the state of the bone, and the model shows that high loading initiate bone growth whereas low loading makes the bone contract. The models use normalized input data, but in order to make full use of the results the actual diffusion coefficient of interest must be known,<br/>and hence an approach to determine diffusion coefficient in bone tissue is developed. By means of conductivity measurements together with an analytical solution, which is fitted to the experimental data using a Kalman filter, diffusion coefficients can be extracted. With known diffusion coefficients it is possible to evaluate the normalized results from the numerical models. Finally a model to evaluate the physiological status of the bone by looking only at a small portion of the cross-section of a bone is presented. The approach uses the size and shape of the pores of a representative area of the bone crosssection<br/>to determine a value of an effective diffusion coefficient of matter and an effective Young’s modulus of the bone. A database with parameters used in the method must be established once with finite element analysis. The model can then be used by anyone, and no knowledge of finite element analysis is required. The calculated values can be used to evaluate how much the porosity is affecting the bone status.}},
  author       = {{Lindberg, Gustav}},
  isbn         = {{978-91-7753-882-0}},
  keywords     = {{bone growth; Osteogenesis; Diffusion in bone; stress enhanced diffusion; Ginzburg-Landau; phase-field; diffusion experiment; Conductivity; Kalman filter; finite element method; Fourier series; Fick’s law; Osteology}},
  language     = {{eng}},
  month        = {{10}},
  publisher    = {{Solid Mechanics, Faculty of Engineering, Lund University}},
  school       = {{Lund University}},
  title        = {{On the Growth of Bone through Stress Driven Diffusion and Bone Generation Processes}},
  url          = {{https://lup.lub.lu.se/search/files/53574212/OntheGrowthofBonethroughStressDrivenDiffusion.pdf}},
  year         = {{2018}},
}