Advanced

Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality

Berggren, Martin LU and del Giorgio, Paul A. (2015) In Journal of Geophysical Research - Biogeosciences 120(6). p.989-999
Abstract
Dissolved organic carbon (DOC) in rivers contains a wide range of molecules that can be assimilated by microbes. However, there is today no integrated understanding of how the source and composition of this DOC regulate the extent to which the DOC can support microbial growth and respiration. We analyzed patterns in microbial metabolism of DOC from different streams and rivers in Québec, by combining short-term bacterial production and respiration measurements with long-term DOC loss and analyses of bacterial use of different single substrates. We show that distinct metabolic patterns indeed exist across catchments, reflecting the varying nature and sources of the DOC. For example, DOC from forest headwaters systematically supported the... (More)
Dissolved organic carbon (DOC) in rivers contains a wide range of molecules that can be assimilated by microbes. However, there is today no integrated understanding of how the source and composition of this DOC regulate the extent to which the DOC can support microbial growth and respiration. We analyzed patterns in microbial metabolism of DOC from different streams and rivers in Québec, by combining short-term bacterial production and respiration measurements with long-term DOC loss and analyses of bacterial use of different single substrates. We show that distinct metabolic patterns indeed exist across catchments, reflecting the varying nature and sources of the DOC. For example, DOC from forest headwaters systematically supported the highest bacterial growth efficiency (BGE) that was recorded, while in contrast DOC in peat bog drainage was used with significantly lower BGE. The carbon consumption in clear mountain rivers, possibly represented by autochthonous algal DOC, supported the highest bacterial respiration rates and the highest long-term DOC losses. By using principle component analysis, we demonstrate how the major axes of variation in all of the measured metabolic responses are tightly connected to spectrofluorometrical DOC composition indicators and to isotopic indicators of DOC source. If causality is assumed, our results imply that changes in DOC supply from different sources, for example, caused by land use or climate change, should result in dramatic changes in the patterns of aquatic microbial metabolism and thus in altered aquatic ecosystem functioning, with likely consequences for food-web structures and greenhouse gas balances. (Less)
Please use this url to cite or link to this publication:
author
publishing date
type
Contribution to journal
publication status
published
subject
keywords
dissolved organic carbon, microbial metabolism
in
Journal of Geophysical Research - Biogeosciences
volume
120
issue
6
pages
989 - 999
publisher
American Geophysical Union
external identifiers
  • wos:000357952400001
  • scopus:84948567255
ISSN
2169-8953
DOI
10.1002/2015JG002963
language
English
LU publication?
no
id
628f324f-7f39-41a6-b1b8-5ff6c4462e8a (old id 7584754)
date added to LUP
2015-09-04 11:30:37
date last changed
2017-09-17 04:09:41
@article{628f324f-7f39-41a6-b1b8-5ff6c4462e8a,
  abstract     = {Dissolved organic carbon (DOC) in rivers contains a wide range of molecules that can be assimilated by microbes. However, there is today no integrated understanding of how the source and composition of this DOC regulate the extent to which the DOC can support microbial growth and respiration. We analyzed patterns in microbial metabolism of DOC from different streams and rivers in Québec, by combining short-term bacterial production and respiration measurements with long-term DOC loss and analyses of bacterial use of different single substrates. We show that distinct metabolic patterns indeed exist across catchments, reflecting the varying nature and sources of the DOC. For example, DOC from forest headwaters systematically supported the highest bacterial growth efficiency (BGE) that was recorded, while in contrast DOC in peat bog drainage was used with significantly lower BGE. The carbon consumption in clear mountain rivers, possibly represented by autochthonous algal DOC, supported the highest bacterial respiration rates and the highest long-term DOC losses. By using principle component analysis, we demonstrate how the major axes of variation in all of the measured metabolic responses are tightly connected to spectrofluorometrical DOC composition indicators and to isotopic indicators of DOC source. If causality is assumed, our results imply that changes in DOC supply from different sources, for example, caused by land use or climate change, should result in dramatic changes in the patterns of aquatic microbial metabolism and thus in altered aquatic ecosystem functioning, with likely consequences for food-web structures and greenhouse gas balances.},
  author       = {Berggren, Martin and del Giorgio, Paul A.},
  issn         = {2169-8953},
  keyword      = {dissolved organic carbon,microbial metabolism},
  language     = {eng},
  number       = {6},
  pages        = {989--999},
  publisher    = {American Geophysical Union},
  series       = {Journal of Geophysical Research - Biogeosciences},
  title        = {Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality},
  url          = {http://dx.doi.org/10.1002/2015JG002963},
  volume       = {120},
  year         = {2015},
}