Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material
(2008) In Science of the Total Environment 393(2-3). p.226-240- Abstract
- In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM(10)) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles... (More)
- In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM(10)) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM(10), respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM(10) emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/798785
- author
- Gustafsson, Mats
; Blomqvist, Göran
; Gudmundsson, Anders
LU
; Dahl, Andreas
LU
; Swietlicki, Erik
LU
; Bohgard, Mats LU ; Lindbom, John and Ljungman, Anders
- organization
- publishing date
- 2008
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Science of the Total Environment
- volume
- 393
- issue
- 2-3
- pages
- 226 - 240
- publisher
- Elsevier
- external identifiers
-
- wos:000254704100005
- scopus:39849108479
- pmid:18258284
- ISSN
- 1879-1026
- DOI
- 10.1016/j.scitotenv.2007.12.030
- language
- English
- LU publication?
- yes
- id
- 55c331b1-ebfc-40ee-8899-9b476b6fd726 (old id 798785)
- alternative location
- http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V78-4RS9SJX-2&_user=745831&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000041498&_version=1&_urlVersion=0&_userid=745831&md5=41dd179869def66a74cce51d3108ae15
- date added to LUP
- 2016-04-01 12:18:09
- date last changed
- 2022-03-28 23:02:28
@article{55c331b1-ebfc-40ee-8899-9b476b6fd726, abstract = {{In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM(10)) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM(10), respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM(10) emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties.}}, author = {{Gustafsson, Mats and Blomqvist, Göran and Gudmundsson, Anders and Dahl, Andreas and Swietlicki, Erik and Bohgard, Mats and Lindbom, John and Ljungman, Anders}}, issn = {{1879-1026}}, language = {{eng}}, number = {{2-3}}, pages = {{226--240}}, publisher = {{Elsevier}}, series = {{Science of the Total Environment}}, title = {{Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material}}, url = {{http://dx.doi.org/10.1016/j.scitotenv.2007.12.030}}, doi = {{10.1016/j.scitotenv.2007.12.030}}, volume = {{393}}, year = {{2008}}, }