Advanced

Experimental and modelling study of the effect of elevated pressure on ethane and propane flames

Goswami, M.; Bastiaans, R. J. M.; de Goey, L. P. H. and Konnov, Alexander LU (2016) In Fuel 166. p.410-418
Abstract
Laminar burning velocities, S-L, of ethane + air and propane + air flames within an equivalence ratio range between 0.8 and 1.3 were determined at atmospheric and elevated pressures up to 4 atm. Measurements were performed in non-stretched flames, stabilized on a perforated plate burner at adiabatic conditions, created using the heat flux method. Initial unburnt gas temperature was 298 K. These new experimental results were compared with available literature data and predictions using three kinetic schemes: USC Mech II, San Diego mechanism and Aramco Mech 1.3. The models behave differently in reproducing S-L of ethane and propane flames with closer agreement between Aramco Mech 1.3 and the present measurements. The pressure dependence of... (More)
Laminar burning velocities, S-L, of ethane + air and propane + air flames within an equivalence ratio range between 0.8 and 1.3 were determined at atmospheric and elevated pressures up to 4 atm. Measurements were performed in non-stretched flames, stabilized on a perforated plate burner at adiabatic conditions, created using the heat flux method. Initial unburnt gas temperature was 298 K. These new experimental results were compared with available literature data and predictions using three kinetic schemes: USC Mech II, San Diego mechanism and Aramco Mech 1.3. The models behave differently in reproducing S-L of ethane and propane flames with closer agreement between Aramco Mech 1.3 and the present measurements. The pressure dependence of the laminar burning velocities was analysed using the expression S-L = S-L0(P/P-0)(beta). Large deviations of the derived power exponent, beta, were observed for different experimental datasets and between model predictions and the measurements. To elucidate these differences in the performance of the three mechanisms, sensitivity analyses of the burning velocity and of the power exponent beta were performed. It was demonstrated that the power exponent beta may serve as an independent target for model validation and improvement. When comparing beta coefficients derived from the present and previous measurements of S-L in methane, ethane, propane and n-pentane flames using the heat flux method, important similarities were found at lean conditions with large disparity in rich mixtures. Neither experiments nor modelling support the linear dependence of the power exponent beta with equivalence ratio for flames of alkanes. (C) 2015 Elsevier Ltd. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Ethane, Propane, Laminar burning velocity, Pressure dependence
in
Fuel
volume
166
pages
410 - 418
publisher
Elsevier
external identifiers
  • wos:000365627700051
  • scopus:84948154975
ISSN
1873-7153
DOI
10.1016/j.fuel.2015.11.013
language
English
LU publication?
yes
id
0f701c40-9a6d-4b62-9cb6-d4fb45419a45 (old id 8560122)
date added to LUP
2016-01-26 09:54:54
date last changed
2017-01-08 04:36:31
@article{0f701c40-9a6d-4b62-9cb6-d4fb45419a45,
  abstract     = {Laminar burning velocities, S-L, of ethane + air and propane + air flames within an equivalence ratio range between 0.8 and 1.3 were determined at atmospheric and elevated pressures up to 4 atm. Measurements were performed in non-stretched flames, stabilized on a perforated plate burner at adiabatic conditions, created using the heat flux method. Initial unburnt gas temperature was 298 K. These new experimental results were compared with available literature data and predictions using three kinetic schemes: USC Mech II, San Diego mechanism and Aramco Mech 1.3. The models behave differently in reproducing S-L of ethane and propane flames with closer agreement between Aramco Mech 1.3 and the present measurements. The pressure dependence of the laminar burning velocities was analysed using the expression S-L = S-L0(P/P-0)(beta). Large deviations of the derived power exponent, beta, were observed for different experimental datasets and between model predictions and the measurements. To elucidate these differences in the performance of the three mechanisms, sensitivity analyses of the burning velocity and of the power exponent beta were performed. It was demonstrated that the power exponent beta may serve as an independent target for model validation and improvement. When comparing beta coefficients derived from the present and previous measurements of S-L in methane, ethane, propane and n-pentane flames using the heat flux method, important similarities were found at lean conditions with large disparity in rich mixtures. Neither experiments nor modelling support the linear dependence of the power exponent beta with equivalence ratio for flames of alkanes. (C) 2015 Elsevier Ltd. All rights reserved.},
  author       = {Goswami, M. and Bastiaans, R. J. M. and de Goey, L. P. H. and Konnov, Alexander},
  issn         = {1873-7153},
  keyword      = {Ethane,Propane,Laminar burning velocity,Pressure dependence},
  language     = {eng},
  pages        = {410--418},
  publisher    = {Elsevier},
  series       = {Fuel},
  title        = {Experimental and modelling study of the effect of elevated pressure on ethane and propane flames},
  url          = {http://dx.doi.org/10.1016/j.fuel.2015.11.013},
  volume       = {166},
  year         = {2016},
}