Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Phonon transport and thermoelectricity in defect-engineered InAs nanowires

Weathers, Annie ; Moore, Arden L. ; Pettes, Michael T. ; Salta, Daniel ; Kim, Jaehyun ; Dick, Kimberly LU ; Samuelson, Lars LU ; Linke, Heiner LU orcid ; Caroff, Philippe LU and Shi, Li (2012) 2011 MRS Fall Meeting In Materials Research Society Symposium Proceedings 1404. p.36-43
Abstract

There have been reports of improvements in the thermoelectric figure of merit through the use of nanostructured materials to suppress the lattice thermal conductivity. Here, we report on a fundamental study of the combined effects of defect planes and surface scattering on phonon transport and thermoelectric properties of defect-engineered InAs nanowires. A microfabricated device is employed to measure the thermal conductivity and thermopower of individual suspended indium arsenide nanowires grown by metal organic vapor phase epitaxy. The four-probe measurement device consists of platinum resistance thermometers and electrodes patterned on two adjacent SiNx membranes. A nanowire was suspended between the two membranes, and... (More)

There have been reports of improvements in the thermoelectric figure of merit through the use of nanostructured materials to suppress the lattice thermal conductivity. Here, we report on a fundamental study of the combined effects of defect planes and surface scattering on phonon transport and thermoelectric properties of defect-engineered InAs nanowires. A microfabricated device is employed to measure the thermal conductivity and thermopower of individual suspended indium arsenide nanowires grown by metal organic vapor phase epitaxy. The four-probe measurement device consists of platinum resistance thermometers and electrodes patterned on two adjacent SiNx membranes. A nanowire was suspended between the two membranes, and electrical contact between the nanowire and the platinum electrodes was made with the evaporation of a Ni/Pd film through a shadow mask. The exposed back side of the device substrate allows for characterization of the crystal structure of the suspended nanowire with transmission electron microscopy (TEM) following measurement. The 100-200 nm diameter zincblende (ZB) InAs nanowire samples were grown with randomly spaced twin defects, stacking faults, or phases boundaries perpendicular to the nanowire growth direction, as revealed by transmission electron microscopy (TEM) analysis. Compared to single-crystal ZB InAs nanowires with a similar lateral dimension, the thermal conductivity of the defect-engineered nanowires is reduced by fifty percent at room temperature.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
Phonons in Nanomaterials: Theory, Experiments and Applications
series title
Materials Research Society Symposium Proceedings
volume
1404
pages
8 pages
conference name
2011 MRS Fall Meeting
conference location
Boston, MA, United States
conference dates
2011-11-28 - 2011-12-02
external identifiers
  • scopus:84879403488
ISSN
0272-9172
ISBN
9781627482219
DOI
10.1557/opl.2012.342
language
English
LU publication?
yes
id
86890db9-03e2-40b7-90f0-c809bdbeaf70
date added to LUP
2022-02-11 14:46:25
date last changed
2023-11-12 06:58:31
@inproceedings{86890db9-03e2-40b7-90f0-c809bdbeaf70,
  abstract     = {{<p>There have been reports of improvements in the thermoelectric figure of merit through the use of nanostructured materials to suppress the lattice thermal conductivity. Here, we report on a fundamental study of the combined effects of defect planes and surface scattering on phonon transport and thermoelectric properties of defect-engineered InAs nanowires. A microfabricated device is employed to measure the thermal conductivity and thermopower of individual suspended indium arsenide nanowires grown by metal organic vapor phase epitaxy. The four-probe measurement device consists of platinum resistance thermometers and electrodes patterned on two adjacent SiN<sub>x</sub> membranes. A nanowire was suspended between the two membranes, and electrical contact between the nanowire and the platinum electrodes was made with the evaporation of a Ni/Pd film through a shadow mask. The exposed back side of the device substrate allows for characterization of the crystal structure of the suspended nanowire with transmission electron microscopy (TEM) following measurement. The 100-200 nm diameter zincblende (ZB) InAs nanowire samples were grown with randomly spaced twin defects, stacking faults, or phases boundaries perpendicular to the nanowire growth direction, as revealed by transmission electron microscopy (TEM) analysis. Compared to single-crystal ZB InAs nanowires with a similar lateral dimension, the thermal conductivity of the defect-engineered nanowires is reduced by fifty percent at room temperature.</p>}},
  author       = {{Weathers, Annie and Moore, Arden L. and Pettes, Michael T. and Salta, Daniel and Kim, Jaehyun and Dick, Kimberly and Samuelson, Lars and Linke, Heiner and Caroff, Philippe and Shi, Li}},
  booktitle    = {{Phonons in Nanomaterials: Theory, Experiments and Applications}},
  isbn         = {{9781627482219}},
  issn         = {{0272-9172}},
  language     = {{eng}},
  pages        = {{36--43}},
  series       = {{Materials Research Society Symposium Proceedings}},
  title        = {{Phonon transport and thermoelectricity in defect-engineered InAs nanowires}},
  url          = {{http://dx.doi.org/10.1557/opl.2012.342}},
  doi          = {{10.1557/opl.2012.342}},
  volume       = {{1404}},
  year         = {{2012}},
}