Advanced

Precipitation variability and its relation to climate anomalies in the Bolivian Altiplano

Canedo-Rosso, Claudia LU ; Uvo, Cintia B. LU and Berndtsson, Ronny LU (2019) In International Journal of Climatology
Abstract

Precipitation variability over the Bolivian Altiplano is strongly affected by local climate and temporal variation of large-scale atmospheric flow. Precipitation is the main water source for drinking water and agricultural production. For this reason, a better understanding of precipitation variability and its relation with climate phenomena can provide important information for forecasting of droughts and floods, disaster risk reduction, and improvement of water management. We present results of an analysis of the austral summer precipitation variability at six locations in the Bolivian Altiplano and connections to climate variability. For this purpose, the variability of the summer precipitation was related to El Niño–Southern... (More)

Precipitation variability over the Bolivian Altiplano is strongly affected by local climate and temporal variation of large-scale atmospheric flow. Precipitation is the main water source for drinking water and agricultural production. For this reason, a better understanding of precipitation variability and its relation with climate phenomena can provide important information for forecasting of droughts and floods, disaster risk reduction, and improvement of water management. We present results of an analysis of the austral summer precipitation variability at six locations in the Bolivian Altiplano and connections to climate variability. For this purpose, the variability of the summer precipitation was related to El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Antarctic Meridional Mode (AMM), and Atlantic Multidecadal Oscillation (AMO). A statistically significant correlation between climate indices and precipitation was found in various spectral frequencies and power. The variability of the summer precipitation was associated with the climate indices using a band-pass filter, representing the signal at a particular period of time. For the ENSO, band-pass filtering was applied for Niño3.4 and Niño3 at band ~2–7 years, for NAO band ~5–8 years, and for AMM band ~10–13 years. The variability of summer precipitation was related to all studied climate modes by negative relationships. The physical explanation for this is first the dry air transported from the Pacific Ocean to the Altiplano during El Niño events. Second, NAO and ENSO are dynamically linked through teleconnections. Third, the intertropical convergence zone (ITCZ) shifts are northwards during the warm phases of AMM. These physical mechanisms lead to a reduced austral summer precipitation associated with positive phases of the ENSO, NAO, and AMM. The results can be used to better forecast precipitation in the Bolivian Altiplano and provide support for the development of policies to improve climate resilience and risk management of water supply.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
AMM, AMO, austral summer precipitation, climate phenomena, ENSO, multivariate analysis, NAO, PDO, wavelet analysis
in
International Journal of Climatology
publisher
John Wiley & Sons
external identifiers
  • scopus:85058094111
ISSN
0899-8418
DOI
10.1002/joc.5937
language
English
LU publication?
yes
id
8b545c2c-a492-4058-80bf-afec94a13ff2
date added to LUP
2018-12-21 11:16:11
date last changed
2019-11-20 05:33:59
@article{8b545c2c-a492-4058-80bf-afec94a13ff2,
  abstract     = {<p>Precipitation variability over the Bolivian Altiplano is strongly affected by local climate and temporal variation of large-scale atmospheric flow. Precipitation is the main water source for drinking water and agricultural production. For this reason, a better understanding of precipitation variability and its relation with climate phenomena can provide important information for forecasting of droughts and floods, disaster risk reduction, and improvement of water management. We present results of an analysis of the austral summer precipitation variability at six locations in the Bolivian Altiplano and connections to climate variability. For this purpose, the variability of the summer precipitation was related to El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Antarctic Meridional Mode (AMM), and Atlantic Multidecadal Oscillation (AMO). A statistically significant correlation between climate indices and precipitation was found in various spectral frequencies and power. The variability of the summer precipitation was associated with the climate indices using a band-pass filter, representing the signal at a particular period of time. For the ENSO, band-pass filtering was applied for Niño3.4 and Niño3 at band ~2–7 years, for NAO band ~5–8 years, and for AMM band ~10–13 years. The variability of summer precipitation was related to all studied climate modes by negative relationships. The physical explanation for this is first the dry air transported from the Pacific Ocean to the Altiplano during El Niño events. Second, NAO and ENSO are dynamically linked through teleconnections. Third, the intertropical convergence zone (ITCZ) shifts are northwards during the warm phases of AMM. These physical mechanisms lead to a reduced austral summer precipitation associated with positive phases of the ENSO, NAO, and AMM. The results can be used to better forecast precipitation in the Bolivian Altiplano and provide support for the development of policies to improve climate resilience and risk management of water supply.</p>},
  author       = {Canedo-Rosso, Claudia and Uvo, Cintia B. and Berndtsson, Ronny},
  issn         = {0899-8418},
  language     = {eng},
  publisher    = {John Wiley & Sons},
  series       = {International Journal of Climatology},
  title        = {Precipitation variability and its relation to climate anomalies in the Bolivian Altiplano},
  url          = {http://dx.doi.org/10.1002/joc.5937},
  doi          = {10.1002/joc.5937},
  year         = {2019},
}