Pancreatic Cancer - Early Detection, Prognostic Factors, and Treatment
(2014) In Lund University Faculty of Medicine Doctoral Dissertation Series 103.- Abstract
- Background: Pancreatic cancer is the fourth leading cause of cancer-related death.
Only about 6% of patients are alive 5 years after diagnosis. One reason for this
low survival rate is that most patients are diagnosed at a late stage, when the tumor
has spread to surrounding tissues or distant organs. Less than 20% of cases are
diagnosed at an early stage that allows them to undergo potentially curative
surgery. However, even for patients with a tumor that has been surgically
removed, local and systemic recurrence is common and the median survival is
only 17-23 months. This underscores the importance to identify factors that can
predict postresection survival. With... (More) - Background: Pancreatic cancer is the fourth leading cause of cancer-related death.
Only about 6% of patients are alive 5 years after diagnosis. One reason for this
low survival rate is that most patients are diagnosed at a late stage, when the tumor
has spread to surrounding tissues or distant organs. Less than 20% of cases are
diagnosed at an early stage that allows them to undergo potentially curative
surgery. However, even for patients with a tumor that has been surgically
removed, local and systemic recurrence is common and the median survival is
only 17-23 months. This underscores the importance to identify factors that can
predict postresection survival. With technical advances and centralization of care,
pancreatic surgery has become a safe procedure. The future optimal treatment for
pancreatic cancer is dependent on increased understanding of tumor biology and
development of individualized and systemic treatment. Previous experimental
studies have reported that mucins, especially the MUC4 mucin, may confer
resistance to the chemotherapeutic agent gemcitabine and may serve as targets for
the development of novel types of intervention.
Aim: The aim of the thesis was to investigate strategies to improve management of
pancreatic cancer, with special reference to early detection, prognostic factors, and
treatment.
Methods: In paper I, 27 prospectively collected serum samples from resectable
pancreatic cancer (n=9), benign pancreatic disease (n=9), and healthy controls
(n=9) were analyzed by high definition mass spectrometry (HDMSE). In paper II,
an artificial neural network (ANN) model was constructed on 84 pancreatic cancer
patients undergoing surgical resection. In paper III, we investigated the effects of
transition from a low- to a high volume-center for pancreaticoduodenectomy in
221 patients. In paper IV, the grade of concordance in terms of MUC4 expression
was examined in 17 tissue sections from primary pancreatic cancer and matched
lymph node metastases. In paper V, pancreatic xenograft tumors were generated in
15 immunodeficient mice by subcutaneous injection of MUC4+ human pancreatic
cancer cell lines; Capan-1, HPAF-II, or CD18/HPAF. In paper VI, a 76-member
combined epigenetics and phosphatase small-molecule inhibitor library was
screened against Capan-1 (MUC4+) and Panc-1 (MUC4-) cells, followed by high
content screening of protein expression.
Results/Conclusion: 134 differentially expressed serum proteins were identified,
of which 40 proteins showed a significant up-regulation in the pancreatic cancer
group. Pancreatic disease link associations could be made for BAZ2A, CDK13,
DAPK1, DST, EXOSC3, INHBE, KAT2B, KIF20B, SMC1B, and SPAG5, by
pathway network linkages to p53, the most frequently altered tumor suppressor in
pancreatic cancer (I). An ANN survival model was developed, identifying 7 risk
factors. The C-index for the model was 0.79, and it performed significantly better
than the Cox regression (II). We experienced improved surgical results for
pancreaticoduodenectomy after the transition to a high-volume center (≥25
procedures/year), including decreased operative duration, blood loss, hemorrhagic
complications, reoperations, and hospital stay. There was also a tendency toward
reduced operative mortality, from 4% to 0% (III). MUC4 positivity was detected
in most primary pancreatic cancer tissues, as well as in matched metastatic lymph
nodes (15/17 vs. 14/17), with a high concordance level (82%) (IV). The tumor
incidence was 100% in the xenograft model. The median MUC4 count was found
to be highest in Capan-1 tumors. α-SMA and collagen extent were also highest in
Capan-1 tumors (V). Apicidin (a histone deacetylase inhibitor) had potent
antiproliferative activity against Capan-1 cells and significantly reduced the
expression of MUC4 and its transcription factor HNF4α. The combined treatment
of apicidin and gemcitabine synergistically inhibited growth of Capan-1 cells (VI). (Less) - Abstract (Swedish)
- Popular Abstract in Swedish
Pankreascancer, cancer i bukspottkörteln, är den fjärde vanligaste orsaken till död i
cancer och årligen insjuknar cirka 1000 patienter i Sverige. Överlevnaden är kort
med en 5-årsöverlevnad på endast 6 procent. Pankreascancer orsakar, förutom
lidande, också betydande kostnader för såväl den medicinska vården, som förluster
för samhället, exempelvis i form av förtida död.
Eftersom symtomen vid pankreascancer är vaga och ofta uppträder i ett sent skede
av sjukdomen finns det ett stort behov av att förbättra den tidiga diagnostiken.
Idag finns inga godkända diagnostiska biomarkörer för pankreascancer. Genom att
söka... (More) - Popular Abstract in Swedish
Pankreascancer, cancer i bukspottkörteln, är den fjärde vanligaste orsaken till död i
cancer och årligen insjuknar cirka 1000 patienter i Sverige. Överlevnaden är kort
med en 5-årsöverlevnad på endast 6 procent. Pankreascancer orsakar, förutom
lidande, också betydande kostnader för såväl den medicinska vården, som förluster
för samhället, exempelvis i form av förtida död.
Eftersom symtomen vid pankreascancer är vaga och ofta uppträder i ett sent skede
av sjukdomen finns det ett stort behov av att förbättra den tidiga diagnostiken.
Idag finns inga godkända diagnostiska biomarkörer för pankreascancer. Genom att
söka efter proteinsekvenser i blodprov med s.k. masspektrometri kan nya
biomarkörer för pankreascancer identifieras. Dessa markörer skulle kunna
användas inom sjukvården för att i ett tidigt skede upptäcka om en patient bär på
en tumör i pankreas innan den har spridit sig till andra organ. Då ökar möjligheten
att bota patienten med operation.
Det är väsentligt med en korrekt bedömning av prognosen för varje patient för att
styra val av behandling. Det finns flera prognostiska modeller beskrivna i
litteraturen, men det saknas fortfarande ett etablerat prognostiskt system.
Nuvarande stadieindelning, s.k. TNM-klassifikationen tar inte hänsyn till faktorer
utöver T-stadium (primärtumörens storlek och utbredning), N-stadium (spridning
till regionala lymfkörtlar) och M-stadium (förekomst av fjärrmetastaser). För
patienter som genomgår kirurgi är TNM-indelningen inte tillräckligt pålitlig för att
förutsäga den enskilde patientens prognos efter operation. En modell för
prediktering av överlevnad kan baseras på s.k. artificiella neurala nätverk, en
avancerad datoriserad optimeringsmodell som kan analysera icke-linjära samband.
Pankreascancer är svårbehandlad och det finns därmed en stor potential för
terapiförbättringar. Kirurgin (Whipples operation) har successivt förfinats och
dödsfall i samband med operation har minskat och är idag några enstaka procent.
Det är visat att centralisering av pankreaskirurgi till högvolymscentra har haft en
viktig roll i detta. Cytostatika (cellgifter) kan ges som efterbehandling efter
kirurgi eller som behandling när tumören växer så att den inte kan opereras.
Tyvärr är resistens mot cytostatika ett vanligt problem och fortsatta förbättringar
av resultaten kräver ökad förståelse av tumörbiologin och ny typ av
individanpassad behandling. MUC4 är ett cellyteprotein som ofta finns i vävnad
från patienter med pankreascancer men som saknas i normal pankreas. Detta
protein har i tidigare experimentella studier kunnat kopplas till cytostatikaresistens.
Terapi riktad mot MUC4 kan därför utgöra en framtida
behandlingsstrategi mot pankreascancer.
I delarbete I studerades värdet av masspektrometri för att påvisa proteinmarkörer i
serum tidigt i förloppet vid pankreascancer. Vid en jämförelse mellan operabel
pankreascancer, godartade pankreassjukdomar och friska individer, identifierades
134 serumproteiner som kunde särskilja grupperna från varandra, varav 40
proteiner var uppreglerade vid pankreascancer. Flera av dessa proteiner kunde via
interaktionsanalyser kopplas till p53, ett protein som har en central roll vid
uppkomst av pankreascancer. Resultaten från denna studie är ett viktigt steg i
utvecklingen av ett enkelt blodbaserat diagnostiskt test för pankreascancer.
I delarbete II utvecklades en algoritm för prognostisering av pankreascancer med
hjälp av artificiella neurala nätverk. Riskfaktorer tillgängliga i daglig klinisk praxis
och som bidrar till sämre prognos vid pankreascancer identifierades och
rangordnades. En modell togs fram som hade bättre prediktionsförmåga än
traditionell statistik analys.
I delarbete III kartlades alla patienter som genomgått Whipples operation i Lund
under perioden 2000-2012. Totalt 221 patienter inkluderades. Resultaten visade att
sedan övergången till högvolymskirurgi (definierat som 25 eller fler operationer
per år) har de operativa resultaten förbättrats vad gäller blodförlust vid operation,
operationstid, blödningskomplikationer, risk för reoperation och vårdtid. Operativ
mortalitet minskade från 4 till 0 procent.
I delarbete IV studerades uttrycket av MUC4 i vävnad från primär pankreascancer
och matchade lymfkörtelmetastaser. Resultaten visade att majoriteten av
primärtumörerna uttryckte MUC4 och att detta uttryck bibehölls i metastaserna,
vilket talar för att MUC4 är ett potentiellt behandlingsmål även vid metastaserande
sjukdom.
I delarbete V utfördes experimentella djurstudier genom transplantation av
pankreastumörcellinjer i immundefekta möss i syfte att arbeta vidare med
MUC4-proteinet. Tumörer från en av cellinjerna (Capan-1) uttryckte mest MUC4 och
bedömdes därför bäst lämpad för fortsatta studier.
I delarbete VI undersöktes den tillväxthämmande effekten av olika s.k.
epigenetiska läkemedel på pankreascancerceller. Apicidin, en s.k. HDAC-hämmare
visade sig mest effektivt och potentierade även effekten av det vanliga
pankreascancermedlet gemcitabin genom att nedreglera MUC4 i cancercellinjen
Capan-1. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/4643641
- author
- Ansari, Daniel LU
- supervisor
- opponent
-
- Professor Friess, Helmut, Department of General Surgery, The University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
- organization
- publishing date
- 2014
- type
- Thesis
- publication status
- published
- subject
- keywords
- artificial neural networks, apicidin, centralization, early detection, epigenetics, high definition mass spectrometry, MUC4, pancreatic cancer, pancreaticoduodenectomy, prognostic factors, xenograft model, treatment
- in
- Lund University Faculty of Medicine Doctoral Dissertation Series
- volume
- 103
- pages
- 180 pages
- publisher
- Surgery (Lund)
- defense location
- Lecture Room 4, Main building, Skåne University Hospital, Lund
- defense date
- 2014-09-26 13:00:00
- ISSN
- 1652-8220
- ISBN
- 9789176190326
- project
- Pancreatic cancer
- language
- English
- LU publication?
- yes
- additional info
- I. Ansari D, Andersson R, Bauden MP, Andersson B, Connolly J, Welinder C, Sasor A, Marko-Varga G. Protein deep sequencing applied to biobank samples from patients with pancreatic cancer. Journal of Cancer Research and Clinical Oncology 2014; In press. II. Ansari D, Nilsson J, Andersson R, Regnér S, Tingstedt B, Andersson B. Artificial neural networks predict survival from pancreatic cancer after radical surgery. American Journal of Surgery 2013;205:1-7. III. Ansari D, Williamsson C, Tingstedt B, Andersson B, Lindell G, Andersson R. Pancreaticoduodenectomy - the transition from a low- to a high-volume center. Scandinavian Journal of Gastroenterology 2014;49:481-4. IV. Ansari D, Urey C, Gundewar C, Bauden MP, Andersson R. Comparison of MUC4 expression in primary pancreatic cancer and paired lymph node metastases. Scandinavian Journal of Gastroenterology 2013;48:1183-7. V. Ansari D, Bauden MP, Sasor A, Gundewar C, Andersson R. Analysis of MUC4 expression in human pancreatic cancer xenografts in immunodeficient mice. Anticancer Research 2014;34:3905-10. VI. Ansari D, Urey C, Said Hilmersson K, Bauden MP, Ek F, Olsson R, Andersson R. Apicidin sensitizes pancreatic cancer cells to gemcitabine by epigenetically regulating MUC4 expression. Anticancer Research 2014; In press.
- id
- 8ba1eb21-adda-45a0-8932-64df1568c859 (old id 4643641)
- date added to LUP
- 2016-04-01 14:04:34
- date last changed
- 2023-04-18 20:22:45
@phdthesis{8ba1eb21-adda-45a0-8932-64df1568c859, abstract = {{Background: Pancreatic cancer is the fourth leading cause of cancer-related death.<br/><br> Only about 6% of patients are alive 5 years after diagnosis. One reason for this<br/><br> low survival rate is that most patients are diagnosed at a late stage, when the tumor<br/><br> has spread to surrounding tissues or distant organs. Less than 20% of cases are<br/><br> diagnosed at an early stage that allows them to undergo potentially curative<br/><br> surgery. However, even for patients with a tumor that has been surgically<br/><br> removed, local and systemic recurrence is common and the median survival is<br/><br> only 17-23 months. This underscores the importance to identify factors that can<br/><br> predict postresection survival. With technical advances and centralization of care,<br/><br> pancreatic surgery has become a safe procedure. The future optimal treatment for<br/><br> pancreatic cancer is dependent on increased understanding of tumor biology and<br/><br> development of individualized and systemic treatment. Previous experimental<br/><br> studies have reported that mucins, especially the MUC4 mucin, may confer<br/><br> resistance to the chemotherapeutic agent gemcitabine and may serve as targets for<br/><br> the development of novel types of intervention.<br/><br> <br/><br> Aim: The aim of the thesis was to investigate strategies to improve management of<br/><br> pancreatic cancer, with special reference to early detection, prognostic factors, and<br/><br> treatment.<br/><br> <br/><br> Methods: In paper I, 27 prospectively collected serum samples from resectable<br/><br> pancreatic cancer (n=9), benign pancreatic disease (n=9), and healthy controls<br/><br> (n=9) were analyzed by high definition mass spectrometry (HDMSE). In paper II,<br/><br> an artificial neural network (ANN) model was constructed on 84 pancreatic cancer<br/><br> patients undergoing surgical resection. In paper III, we investigated the effects of<br/><br> transition from a low- to a high volume-center for pancreaticoduodenectomy in<br/><br> 221 patients. In paper IV, the grade of concordance in terms of MUC4 expression<br/><br> was examined in 17 tissue sections from primary pancreatic cancer and matched<br/><br> lymph node metastases. In paper V, pancreatic xenograft tumors were generated in<br/><br> 15 immunodeficient mice by subcutaneous injection of MUC4+ human pancreatic<br/><br> cancer cell lines; Capan-1, HPAF-II, or CD18/HPAF. In paper VI, a 76-member<br/><br> combined epigenetics and phosphatase small-molecule inhibitor library was<br/><br> screened against Capan-1 (MUC4+) and Panc-1 (MUC4-) cells, followed by high<br/><br> content screening of protein expression.<br/><br> <br/><br> Results/Conclusion: 134 differentially expressed serum proteins were identified,<br/><br> of which 40 proteins showed a significant up-regulation in the pancreatic cancer<br/><br> group. Pancreatic disease link associations could be made for BAZ2A, CDK13,<br/><br> DAPK1, DST, EXOSC3, INHBE, KAT2B, KIF20B, SMC1B, and SPAG5, by<br/><br> pathway network linkages to p53, the most frequently altered tumor suppressor in<br/><br> pancreatic cancer (I). An ANN survival model was developed, identifying 7 risk<br/><br> factors. The C-index for the model was 0.79, and it performed significantly better<br/><br> than the Cox regression (II). We experienced improved surgical results for<br/><br> pancreaticoduodenectomy after the transition to a high-volume center (≥25<br/><br> procedures/year), including decreased operative duration, blood loss, hemorrhagic<br/><br> complications, reoperations, and hospital stay. There was also a tendency toward<br/><br> reduced operative mortality, from 4% to 0% (III). MUC4 positivity was detected<br/><br> in most primary pancreatic cancer tissues, as well as in matched metastatic lymph<br/><br> nodes (15/17 vs. 14/17), with a high concordance level (82%) (IV). The tumor<br/><br> incidence was 100% in the xenograft model. The median MUC4 count was found<br/><br> to be highest in Capan-1 tumors. α-SMA and collagen extent were also highest in<br/><br> Capan-1 tumors (V). Apicidin (a histone deacetylase inhibitor) had potent<br/><br> antiproliferative activity against Capan-1 cells and significantly reduced the<br/><br> expression of MUC4 and its transcription factor HNF4α. The combined treatment<br/><br> of apicidin and gemcitabine synergistically inhibited growth of Capan-1 cells (VI).}}, author = {{Ansari, Daniel}}, isbn = {{9789176190326}}, issn = {{1652-8220}}, keywords = {{artificial neural networks; apicidin; centralization; early detection; epigenetics; high definition mass spectrometry; MUC4; pancreatic cancer; pancreaticoduodenectomy; prognostic factors; xenograft model; treatment}}, language = {{eng}}, publisher = {{Surgery (Lund)}}, school = {{Lund University}}, series = {{Lund University Faculty of Medicine Doctoral Dissertation Series}}, title = {{Pancreatic Cancer - Early Detection, Prognostic Factors, and Treatment}}, url = {{https://lup.lub.lu.se/search/files/3763491/4647477.pdf}}, volume = {{103}}, year = {{2014}}, }