Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Vibrations from Railway Traffic : Computational Modeling and Analysis

Malmborg, Jens LU (2022)
Abstract
The population is growing, and an increasing proportion of the population lives in urban areas. As a consequence, human exposure to noise and vibrations is increasing; two major sources being railway and road traffic. Larger and denser cities lead to a higher amount of traffic close to where people work and live. Land close to railways and heavily trafficked roads, previously left unexploited, are now being used for dwellings and offices. Vibrations are often accompanied by noise, to which long-term exposure is known to have serious health effects. Furthermore, some buildings such as hospitals and research facilities contain instruments that are highly sensitive to vibrations, and require proper vibration isolation to ensure safe... (More)
The population is growing, and an increasing proportion of the population lives in urban areas. As a consequence, human exposure to noise and vibrations is increasing; two major sources being railway and road traffic. Larger and denser cities lead to a higher amount of traffic close to where people work and live. Land close to railways and heavily trafficked roads, previously left unexploited, are now being used for dwellings and offices. Vibrations are often accompanied by noise, to which long-term exposure is known to have serious health effects. Furthermore, some buildings such as hospitals and research facilities contain instruments that are highly sensitive to vibrations, and require proper vibration isolation to ensure safe operation. To address the problems of noise and vibrations, their generation and propagation need to be understood.

The vibrations next to a railway track are caused by the forces exerted on the track by the passing train. These forces are the sum of a quasi-static part due to the deadweight of the train, and a dynamic part. The dynamic part is caused by various phenomena resulting in time-dependent train–track interaction forces. The vibrations generated at the track propagate through the underlying and surrounding soil as elastic waves of various types. The mechanical properties of the soil strongly influence the wave propagation and the resulting vibrations registered by a receiver at some distance from the track. For a building structure next to the track, the vibrations inside the building furthermore depend on the mechanical and geometrical properties of the building’s structural elements.

In the thesis, numerical models and modeling strategies for predicting ground-borne vibrations from railway tracks have been developed. Various techniques to calculate the wave propagation in the soil have been implemented and used for studying different phenomena, such as the vibrations at the soil surface and in a building next to the track, caused by a train running over an uneven rail. Furthermore, the mitigation of traininduced ground vibrations and so called “critical velocity” effects, i.e. highspeed trains moving faster than the wave speed in the underlying soil, were studied. In addition, models developed in the thesis were utilized to compare the dynamic responses of a heavyweight concrete building and a lightweight wooden building, when excited by ground vibrations induced by a train moving over an uneven rail.
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Alves Costa, Pedro, University of Porto, Portugal.
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Train-induced vibrations, ground vibration, wave propagation, soil dynamics, finite element method, soil stiffening, critical velocity
pages
231 pages
publisher
Lund University
defense location
Lecture Hall V:B, building V, John Ericssons väg 1, Faculty of Engineering LTH, Lund University, Lund.
defense date
2022-10-21 09:00:00
ISBN
978-91-8039-373-7
978-91-8039-374-4
language
English
LU publication?
yes
id
8d8e04e1-b3ca-4c90-abf7-a38a99566a63
alternative location
https://www.byggmek.lth.se/fileadmin/byggnadsmekanik/publications/tvsm1000/web1033.pdf
date added to LUP
2022-09-27 14:33:59
date last changed
2023-09-06 09:56:52
@phdthesis{8d8e04e1-b3ca-4c90-abf7-a38a99566a63,
  abstract     = {{The population is growing, and an increasing proportion of the population lives in urban areas. As a consequence, human exposure to noise and vibrations is increasing; two major sources being railway and road traffic. Larger and denser cities lead to a higher amount of traffic close to where people work and live. Land close to railways and heavily trafficked roads, previously left unexploited, are now being used for dwellings and offices. Vibrations are often accompanied by noise, to which long-term exposure is known to have serious health effects. Furthermore, some buildings such as hospitals and research facilities contain instruments that are highly sensitive to vibrations, and require proper vibration isolation to ensure safe operation. To address the problems of noise and vibrations, their generation and propagation need to be understood. <br/><br/>The vibrations next to a railway track are caused by the forces exerted on the track by the passing train. These forces are the sum of a quasi-static part due to the deadweight of the train, and a dynamic part. The dynamic part is caused by various phenomena resulting in time-dependent train–track interaction forces. The vibrations generated at the track propagate through the underlying and surrounding soil as elastic waves of various types. The mechanical properties of the soil strongly influence the wave propagation and the resulting vibrations registered by a receiver at some distance from the track. For a building structure next to the track, the vibrations inside the building furthermore depend on the mechanical and geometrical properties of the building’s structural elements.<br/><br/>In the thesis, numerical models and modeling strategies for predicting ground-borne vibrations from railway tracks have been developed. Various techniques to calculate the wave propagation in the soil have been implemented and used for studying different phenomena, such as the vibrations at the soil surface and in a building next to the track, caused by a train running over an uneven rail. Furthermore, the mitigation of traininduced ground vibrations and so called “critical velocity” effects, i.e. highspeed trains moving faster than the wave speed in the underlying soil, were studied. In addition, models developed in the thesis were utilized to compare the dynamic responses of a heavyweight concrete building and a lightweight wooden building, when excited by ground vibrations induced by a train moving over an uneven rail.<br/>}},
  author       = {{Malmborg, Jens}},
  isbn         = {{978-91-8039-373-7}},
  keywords     = {{Train-induced vibrations; ground vibration; wave propagation; soil dynamics; finite element method; soil stiffening; critical velocity}},
  language     = {{eng}},
  month        = {{09}},
  publisher    = {{Lund University}},
  school       = {{Lund University}},
  title        = {{Vibrations from Railway Traffic : Computational Modeling and Analysis}},
  url          = {{https://www.byggmek.lth.se/fileadmin/byggnadsmekanik/publications/tvsm1000/web1033.pdf}},
  year         = {{2022}},
}