A Centralized and Scalable Uplink Power Control Algorithm in Low SINR Scenarios
(2021) In IEEE Transactions on Vehicular Technology 70(9). p.9583-9587- Abstract
Power control is becoming increasingly essential for the fifth-generation (5G) and beyond systems. An example use-case, among others, is the unmanned-aerial-vehicle (UAV) communications where the nearly line-of-sight (LoS) radio channels may result in very low signal-to-interference-plus-noise ratios (SINRs). The authors in (Chiang et al., 2007) proposed to efficiently and reliably solve this kind of non-convex problem via a series of geometrical programmings (GPs) using condensation approximation. However, it is only applicable for a small-scale network with several communication pairs and practically infeasible with more (e.g., tens of) nodes to be jointly optimized. We therefore in this paper aim to provide new insights into this... (More)
Power control is becoming increasingly essential for the fifth-generation (5G) and beyond systems. An example use-case, among others, is the unmanned-aerial-vehicle (UAV) communications where the nearly line-of-sight (LoS) radio channels may result in very low signal-to-interference-plus-noise ratios (SINRs). The authors in (Chiang et al., 2007) proposed to efficiently and reliably solve this kind of non-convex problem via a series of geometrical programmings (GPs) using condensation approximation. However, it is only applicable for a small-scale network with several communication pairs and practically infeasible with more (e.g., tens of) nodes to be jointly optimized. We therefore in this paper aim to provide new insights into this problem. By properly introducing auxiliary variables, the problem is transformed to an equivalent form which is simpler and more intuitive for condensation. A novel condensation method with linear complexity is also proposed based on the form. The enhancements make the GP-based power control feasible for both small- and especially large-scale networks that are common in 5G and beyond. The algorithm is verified via simulations. A preliminary case study of uplink UAV communications also shows the potential of the algorithm.
(Less)
- author
- Cai, Xuesong LU ; Kovacs, Istvan Z. ; Wigard, Jeroen and Mogensen, Preben E.
- organization
- publishing date
- 2021-09
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- geometrical programming, Interference management, power control, uplink and UAV
- in
- IEEE Transactions on Vehicular Technology
- volume
- 70
- issue
- 9
- pages
- 5 pages
- publisher
- IEEE - Institute of Electrical and Electronics Engineers Inc.
- external identifiers
-
- scopus:85111076229
- ISSN
- 0018-9545
- DOI
- 10.1109/TVT.2021.3097773
- language
- English
- LU publication?
- yes
- additional info
- Publisher Copyright: © 1967-2012 IEEE.
- id
- 8de121d8-1c5e-4457-9b5b-b74b8349c9f7
- date added to LUP
- 2021-11-22 23:03:10
- date last changed
- 2022-04-27 06:00:13
@article{8de121d8-1c5e-4457-9b5b-b74b8349c9f7, abstract = {{<p>Power control is becoming increasingly essential for the fifth-generation (5G) and beyond systems. An example use-case, among others, is the unmanned-aerial-vehicle (UAV) communications where the nearly line-of-sight (LoS) radio channels may result in very low signal-to-interference-plus-noise ratios (SINRs). The authors in (Chiang et al., 2007) proposed to efficiently and reliably solve this kind of non-convex problem via a series of geometrical programmings (GPs) using condensation approximation. However, it is only applicable for a small-scale network with several communication pairs and practically infeasible with more (e.g., tens of) nodes to be jointly optimized. We therefore in this paper aim to provide new insights into this problem. By properly introducing auxiliary variables, the problem is transformed to an equivalent form which is simpler and more intuitive for condensation. A novel condensation method with linear complexity is also proposed based on the form. The enhancements make the GP-based power control feasible for both small- and especially large-scale networks that are common in 5G and beyond. The algorithm is verified via simulations. A preliminary case study of uplink UAV communications also shows the potential of the algorithm. </p>}}, author = {{Cai, Xuesong and Kovacs, Istvan Z. and Wigard, Jeroen and Mogensen, Preben E.}}, issn = {{0018-9545}}, keywords = {{geometrical programming; Interference management; power control; uplink and UAV}}, language = {{eng}}, number = {{9}}, pages = {{9583--9587}}, publisher = {{IEEE - Institute of Electrical and Electronics Engineers Inc.}}, series = {{IEEE Transactions on Vehicular Technology}}, title = {{A Centralized and Scalable Uplink Power Control Algorithm in Low SINR Scenarios}}, url = {{https://lup.lub.lu.se/search/files/111250136/TVT3097773.pdf}}, doi = {{10.1109/TVT.2021.3097773}}, volume = {{70}}, year = {{2021}}, }