Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Cardiomyocyte Cell Cycle, Renewal and Isolation

Walsh, Stuart LU (2010) In Lund University Faculty of Medicine Doctoral Dissertation Series 2010:44.
Abstract
Heart disease results from the loss of cardiomyocytes following myocardial damage and is a leading cause of death worldwide. Stimulating the endogenous regeneration of cardiomyocytes or isolating them from in vitro culture is an attractive therapeutic strategy. In paper I, the focus is on the cellular growth patterns of murine cardiomyocytes under steady-state conditions. The turnover of cardiomyocytes was accurately established and key gene expression patterns associated with developmentally distinct periods of cardiomyocyte growth and turnover were identified. There was no significant generation of cardiomyocytes in the adult mouse heart. In paper II, the focus is on turnover of human cardiomyocytes . Taking advantage of the integration... (More)
Heart disease results from the loss of cardiomyocytes following myocardial damage and is a leading cause of death worldwide. Stimulating the endogenous regeneration of cardiomyocytes or isolating them from in vitro culture is an attractive therapeutic strategy. In paper I, the focus is on the cellular growth patterns of murine cardiomyocytes under steady-state conditions. The turnover of cardiomyocytes was accurately established and key gene expression patterns associated with developmentally distinct periods of cardiomyocyte growth and turnover were identified. There was no significant generation of cardiomyocytes in the adult mouse heart. In paper II, the focus is on turnover of human cardiomyocytes . Taking advantage of the integration of 14C generated by nuclear bomb tests during the Cold War into DNA, we were able to accurately establish the age of cardiomyocytes in humans. Through mathematical modeling it was established that cardiomyocytes are renewed at a rate of approximately 1% per year at the age of 20 and 0.4% at the age of 75. In papers III and IV, the focus was the development of isolation strategies for embryonic (paper III & IV) and more mature cardiomyocytes (paper IV). We establish a non-genetic FACS based technique utilizing the surface marker VCAM-1, facilitating the enrichment of embryonic cardiomyocytes (paper III). Additional surface markers are assayed for their potential to isolate cardiomyocytes from other time-points in paper IV.

This thesis provides new knowledge in the field of cardiomyocyte kinetics and mitotic activity. In addition we have identified key genes involved in cell cycle control in cardiomyocytes, which are potential candidates for therapeutic manipulation. We have also established a non-genetic FACS based purification method for embryonic cardiomyocytes. Any potential cellular therapy for heart disease involving cardiomyocytes would require the elimination of contaminating non-myocyte cells. A strategy that facilitates a non-genetic method of isolating embryonic cardiomyocytes would also be a powerful tool for the study of such cells. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Hjärtsjukdom som orsakas av skador på hjärtmuskelceller är en av de vanligaste dödsorsakerna världen över. En framtida önskvärd behandling vore att kunna stimulera kroppens egna förmåga att återskapa hjärtmuskelceller, eller att isolera hjärtmuskelceller framställda i cellkultur.

Arbete I är fokusera på studier rörande tillväxtmönstret hos hjärtmuskelceller under normala förhållanden hos möss. Graden av nybildning och omsättning av hjärtmuskelceller fastlogs exakt och genuttryck specifika för olika tidpunkter i hjärtats utveckling identifierades. Resultatet visade att det inte fanns någon signifikant nybildning av hjärtmuskelceller i hjärtat på vuxna djur.

I arbete II fokusera... (More)
Popular Abstract in Swedish

Hjärtsjukdom som orsakas av skador på hjärtmuskelceller är en av de vanligaste dödsorsakerna världen över. En framtida önskvärd behandling vore att kunna stimulera kroppens egna förmåga att återskapa hjärtmuskelceller, eller att isolera hjärtmuskelceller framställda i cellkultur.

Arbete I är fokusera på studier rörande tillväxtmönstret hos hjärtmuskelceller under normala förhållanden hos möss. Graden av nybildning och omsättning av hjärtmuskelceller fastlogs exakt och genuttryck specifika för olika tidpunkter i hjärtats utveckling identifierades. Resultatet visade att det inte fanns någon signifikant nybildning av hjärtmuskelceller i hjärtat på vuxna djur.

I arbete II fokusera studierna på omsättningen av hjärtmuskelceller hos människa. Här har vi kunnat dra fördel av den inkorporering av radioaktivt kol (14C ) i kromosomalt DNA som inträffade under kalla krigets provsprängningar med atomvapen. Denna radioaktiva inmärkning gjorde det möjligt att exakt mäta åldern på hjärtmuskelceller hos människor. Matematiskt kunde vi bestämma att hjärtmuskelceller förnyades med en frekvens på ungefär 1% per år vid 20 års ålder och 0.3% vid 75 års ålder.

I arbete III och IV ligger fokusera på att utveckla strategier för att isolera embryonala (III och IV) eller mer utmognade (IV) hjärtmuskelceller. Vi har upprättat en genetiskt oberoende FACS-baserad teknik där ytmarkören VCAM-1 används för att rena fram tidiga embryonala hjärtmuskelceller (III). Ytterligare ytmarkörer undersöks för deras potential att kunna definiera och isolera hjärtmuskelceller även från andra tidpunkter (IV).

Den här avhandlingen tillför ny kunskap inom forskning som rör kinetik och celldelning hos hjärtmuskelceller. Dessutom har vi identifierat nyckelgener som är involverade i cellcykel-kontroll av hjärtmuskelceller och som utgör potentiella kandidater för en terapeutisk behandling och manipulation. Utöver detta har vi utvecklat en genetiskt oberoende FACS-baserad isoleringsmetod för embryonala hjärtmuskelceller. För alla tänkbara cell-baserade transplantationer till ett skadat hjärta kommer det krävas att celler som inte är hjärtmuskelceller kan elimineras. En strategi där en genetiskt oberoende metod används för att rena fram hjärtmuskelceller skulle även kunna utgöra ett viktigt redskap för att studera dessa celler. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • M.D. Ph.D. Wu, Sean, Cardiovascular Research Center, Massachusetts General Hospital (MGH), Harvard University, Boston, USA
organization
publishing date
type
Thesis
publication status
published
subject
keywords
binucleation, Cardiomyocytes, surface marker, troponin-T, mitosis, microarray, cell cycle, FACS
in
Lund University Faculty of Medicine Doctoral Dissertation Series
volume
2010:44
pages
117 pages
publisher
Cardiovascular Laboratory, Center for Stem Cell Biology, Lund
defense location
Segerfalk lecture hall, BMC A10, Lund
defense date
2010-04-23 14:00:00
ISSN
1652-8220
ISBN
978-91-86443-59-7
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Hematopoietic Stem Cell Laboratory (013022012)
id
94d2290b-4274-4de0-91e0-cfced3651c93 (old id 1585511)
date added to LUP
2016-04-01 14:31:48
date last changed
2023-04-18 20:13:06
@phdthesis{94d2290b-4274-4de0-91e0-cfced3651c93,
  abstract     = {{Heart disease results from the loss of cardiomyocytes following myocardial damage and is a leading cause of death worldwide. Stimulating the endogenous regeneration of cardiomyocytes or isolating them from in vitro culture is an attractive therapeutic strategy. In paper I, the focus is on the cellular growth patterns of murine cardiomyocytes under steady-state conditions. The turnover of cardiomyocytes was accurately established and key gene expression patterns associated with developmentally distinct periods of cardiomyocyte growth and turnover were identified. There was no significant generation of cardiomyocytes in the adult mouse heart. In paper II, the focus is on turnover of human cardiomyocytes . Taking advantage of the integration of 14C generated by nuclear bomb tests during the Cold War into DNA, we were able to accurately establish the age of cardiomyocytes in humans. Through mathematical modeling it was established that cardiomyocytes are renewed at a rate of approximately 1% per year at the age of 20 and 0.4% at the age of 75. In papers III and IV, the focus was the development of isolation strategies for embryonic (paper III &amp; IV) and more mature cardiomyocytes (paper IV). We establish a non-genetic FACS based technique utilizing the surface marker VCAM-1, facilitating the enrichment of embryonic cardiomyocytes (paper III). Additional surface markers are assayed for their potential to isolate cardiomyocytes from other time-points in paper IV.<br/><br>
This thesis provides new knowledge in the field of cardiomyocyte kinetics and mitotic activity. In addition we have identified key genes involved in cell cycle control in cardiomyocytes, which are potential candidates for therapeutic manipulation. We have also established a non-genetic FACS based purification method for embryonic cardiomyocytes. Any potential cellular therapy for heart disease involving cardiomyocytes would require the elimination of contaminating non-myocyte cells. A strategy that facilitates a non-genetic method of isolating embryonic cardiomyocytes would also be a powerful tool for the study of such cells.}},
  author       = {{Walsh, Stuart}},
  isbn         = {{978-91-86443-59-7}},
  issn         = {{1652-8220}},
  keywords     = {{binucleation; Cardiomyocytes; surface marker; troponin-T; mitosis; microarray; cell cycle; FACS}},
  language     = {{eng}},
  publisher    = {{Cardiovascular Laboratory, Center for Stem Cell Biology, Lund}},
  school       = {{Lund University}},
  series       = {{Lund University Faculty of Medicine Doctoral Dissertation Series}},
  title        = {{Cardiomyocyte Cell Cycle, Renewal and Isolation}},
  url          = {{https://lup.lub.lu.se/search/files/4026477/1585512.pdf}},
  volume       = {{2010:44}},
  year         = {{2010}},
}