Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

Acharya, S. ; Basu, S. LU orcid ; Christiansen, P. LU ; Hansen, J. LU ; Iversen, K.E. LU orcid ; Matonoha, O. LU ; Nepeivoda, R. LU orcid ; Ohlson, A. LU ; Silvermyr, D. LU orcid and Staa, J. LU , et al. (2024) In Physical Review C 109(1).
Abstract
The first measurements of K∗(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=5.44 TeV and pp collisions ats=5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| < 0.5) using the hadronic decay channel K∗0 →K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K∗0, and yield ratios of resonance to stable hadron (K∗0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K∗0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found... (More)
The first measurements of K∗(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=5.44 TeV and pp collisions ats=5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| < 0.5) using the hadronic decay channel K∗0 →K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K∗0, and yield ratios of resonance to stable hadron (K∗0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K∗0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K∗0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas-partial chemical equilibrium model. © 2024 CERN. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review C
volume
109
issue
1
article number
014911
publisher
American Physical Society
external identifiers
  • scopus:85184487546
ISSN
2469-9985
DOI
10.1103/PhysRevC.109.014911
language
English
LU publication?
yes
id
95fffd2e-885e-40d3-9b13-d2ab9188ce59
date added to LUP
2024-03-12 14:50:03
date last changed
2024-03-12 14:51:29
@article{95fffd2e-885e-40d3-9b13-d2ab9188ce59,
  abstract     = {{The first measurements of K∗(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=5.44 TeV and pp collisions ats=5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| &lt; 0.5) using the hadronic decay channel K∗0 →K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K∗0, and yield ratios of resonance to stable hadron (K∗0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K∗0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K∗0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas-partial chemical equilibrium model. © 2024 CERN.}},
  author       = {{Acharya, S. and Basu, S. and Christiansen, P. and Hansen, J. and Iversen, K.E. and Matonoha, O. and Nepeivoda, R. and Ohlson, A. and Silvermyr, D. and Staa, J. and Vislavicius, V. and Zugravel, S.C. and Zurlo, N.}},
  issn         = {{2469-9985}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{American Physical Society}},
  series       = {{Physical Review C}},
  title        = {{System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider}},
  url          = {{http://dx.doi.org/10.1103/PhysRevC.109.014911}},
  doi          = {{10.1103/PhysRevC.109.014911}},
  volume       = {{109}},
  year         = {{2024}},
}