Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

MRI Perfusion Measurements using Magnetic Susceptibility Effects: : Calibration Approaches and Contrast Agent Quantification

Lind, Emelie LU (2019)
Abstract
Exchange of oxygen and nutrients between blood and tissue occurs at the capillary level of the blood system. The blood volume flow rate in the capillaries is often referred to as perfusion, and knowledge about perfusion provides important information about the function and viability of the tissue, for example, in patients with ischaemic stroke, cancer, and neurodegenerative diseases.

Dynamic susceptibility contrast magnetic resonance imaging (DSC–MRI) is the basic data collection approach used to obtain perfusion information from the studies reported in this doctoral thesis. The approach shows the advantage of providing estimates of not only brain perfusion, or cerebral blood flow (CBF), but also cerebral blood volume (CBV) and... (More)
Exchange of oxygen and nutrients between blood and tissue occurs at the capillary level of the blood system. The blood volume flow rate in the capillaries is often referred to as perfusion, and knowledge about perfusion provides important information about the function and viability of the tissue, for example, in patients with ischaemic stroke, cancer, and neurodegenerative diseases.

Dynamic susceptibility contrast magnetic resonance imaging (DSC–MRI) is the basic data collection approach used to obtain perfusion information from the studies reported in this doctoral thesis. The approach shows the advantage of providing estimates of not only brain perfusion, or cerebral blood flow (CBF), but also cerebral blood volume (CBV) and mean transit time (MTT). All of these parameters are required for a comprehensive description of microcirculation. When using standard implementations of DSC–MRI image acquisition and post-processing routines, the CBF and CBV values are often overestimated. In DSC–MRI, a contrast agent (CA) bolus is injected intravenously in an arm vein and is subsequently tracked by rapid imaging when passing through the brain. To calculate CBF, CBV, and MTT, CA concentration information from both tissue and blood is required. The main problem of DSC–MRI is estimating reliable CA concentration levels in tissue and artery simultaneously. Relatedly, if transverse relaxivity-based information is used, then the response to the CA, in terms of the change in relaxation rate, ΔR2∗, differs between blood and tissue. Additionally, there is a non-linear dependence on CA concentration in whole blood. Another issue related to estimations of blood concentration is the practical difficulty of finding a voxel containing only blood, implying that the concentration time curve representing blood will be affected by the surrounding tissue, possibly influencing both the shape of the curve and the absolute levels of estimated concentrations.

One approach is to obtain CBV estimates with alternative methods, where contrast agent concentration is quantified using the longitudinal relaxation time, T1, or by using a special MRI pulse sequence designed to study the blood contribution to the MRI signal. The information from these additional CBV estimates is used to calibrate the conventional DSC–MRI data. This approach provided perfusion results with the expected absolute levels but showed moderate repeatability and low correlation with arterial spin labelling (ASL), used as a reference perfusion imaging method. Another study included in the context of this doctoral thesis dealt with the issue of partial-volume effects in the voxel selected to represent blood. By rescaling the area under the curve (AUC) of the concentration-versus-time curve measured in an artery (assumed to show the desired shape), with the AUC of a large vein, measured under circumstances more favourable for blood-data registration, CBF and CBV values were calibrated. This method aims primarily to correct for partial volume effects in the blood voxel (i.e. it does not directly address relaxivity issues). An observation of interest in this context was that absolute perfusion levels similar to what was expected from literature data were obtained. Furthermore, the repeatability was more promising using this approach, compared to the ones described above.

The phase of the MRI signal is related to the magnetic field strength, which, in turn, is related to the magnetic susceptibility. As the CA alters the magnetic susceptibility, it should, in principle, be possible to obtain information about CA concentration using MRI phase information. This approach was used in three of the studies described in this thesis, for calculation of perfusionrelated parameters in relative and absolute terms. These studies indicated that information about (or related to) magnetic susceptibility is a promising method for estimating CA concentration, whereas a number of methodological issues still need to be resolved or further investigated. It was also shown that the shape of an arterial ΔR2* curve, based on DSC–MRI data, displayed a shape similar to the corresponding curve obtained by using magnetic susceptibility information for assessment of concentration. Thus, the shape of a typical arterial blood concentration curve used in a standard DSC–MRI experiment can probably be regarded reasonably reliable. However, the AUC is likely to be underestimated because of partial-volume effects.
(Less)
Abstract (Swedish)
Perfusion eller genomblödning är termer som används för att beskriva blodflödet i kroppens allra minsta kärl. Information om perfusion kan vara av stor betydelse för att ställa diagnos vid vissa sjukdomar, eftersom blodet transporterar det syre och den näring som behövs för att upprättahålla vävnadens funktion i kroppen. Ett viktigt exempel där information om perfusion kan vara till nytta för att ställa rätt diagnos är stroke, där perfusionsmätningar kan berätta om en behandling kan vara till nytta för patienten eller om behandlingen i huvudsak kommer att innebära en omotiverad risk i form av biverkningar. Andra exempel där perfusionsmätningar kan användas är i samband med cancersjukdomar, då tumörens aggressivitet kan bedömas med hjälp av... (More)
Perfusion eller genomblödning är termer som används för att beskriva blodflödet i kroppens allra minsta kärl. Information om perfusion kan vara av stor betydelse för att ställa diagnos vid vissa sjukdomar, eftersom blodet transporterar det syre och den näring som behövs för att upprättahålla vävnadens funktion i kroppen. Ett viktigt exempel där information om perfusion kan vara till nytta för att ställa rätt diagnos är stroke, där perfusionsmätningar kan berätta om en behandling kan vara till nytta för patienten eller om behandlingen i huvudsak kommer att innebära en omotiverad risk i form av biverkningar. Andra exempel där perfusionsmätningar kan användas är i samband med cancersjukdomar, då tumörens aggressivitet kan bedömas med hjälp av perfusionsrelaterad information. Det finns också hopp om att kunskap om blodflödet i tumören, i kombination med annan bildinformation, kan ge information om behandlingseffektivitet redan i ett tidigt skede.

Den här doktorsavhandlingen beskriver hur man kan ta fram bilder över hjärnan som i varje bildelement (pixel) visar hur högt blodflödet är i hjärnvävnaden. Det finns flera bildgivande tekniker som kan generera sådana bilder, men i vårt fall har magnetkameraundersökningar utnyttjats. Fördelen med denna modalitet är att patienten slipper utsättas för joniserande strålning, och detta är en fördel framför allt vid undersökning av barn samt för vuxna som förväntas genomgå många undersökningar. De studier som den här avhandlingen beskriver har fokuserat på en metod som kallas dynamic susceptiblity contrast magnetic resonance imaging (DSC-MRI). Den här metoden är robust och ger bilder av visuellt god kvalitet, men
de värden på blodflödet som visas i bilden är ofta högre än de sanna värdena. Detta kan bero på flera olika svårigheter i samband med mätning och beräkning, men ett av de viktigaste problemen är att det är svårt att mäta koncentrationen av kontrastmedel inuti kroppen med hjälp av magnetkamera.

Syftet med det här avhandlingsarbetet har varit att studera och utveckla metoder som gör det möjligt att förbättra bestämningen av kontrastmedelskoncentration samt att korrigera för de fel som uppstår då koncentrationen har felbedömts. Det har visat sig vara möjligt att få fram perfusionsvärden som förefaller trovärdiga om man jämför med resultat från andra bildgivande metoder. I flera av studierna har precisionen i resultaten bedömts genom att man upprepat experimentet på samma person och noterat skillnaden i mätresultat mellan två likvärdiga mätningar. Detta är en viktig aspekt för att bedöma om metoden kan användas kliniskt för patienter. Vissa av metoderna har uppvisat liknande resultat vid de båda mätningarna medan andra har resulterat i en större variation mellan de två
mättillfällena.

Ett intressant sätt att bedöma koncentrationen av kontrastmedel är att studera hur kontrastmedlet påverkar den magnetiska susceptibiliteten. Denna storhet utgör ett mått på graden av magnetisering av ett objekt då det placeras i ett yttre magnetfält. Vävnad har generellt sett låg susceptibilitet och påverkas alltså inte i så stor utsträckning av magnetfältet i magnetkameran medan kontrastmedlet påverkas mer. Att mäta den magnetiska susceptibiliteten för att kvantifiera koncentrationen av kontrastmedlet i vävnaden är en relativt ny metod som har utvecklats och utvärderats i de aktuella avhandlingsprojekten. Metoden verkar lovande i det avseendet att den gett rimliga koncentrationsnivåer i vävnaden, vilket i sin tur har medfört att våra uppskattningar av blodvolymen har varit i linje med vad man kan förvänta sig. Avhandlingsarbetena pekar dock också på att den metod som används för att bestämma den magnetiska susceptibiliteten behöver utvecklas för att metoden ska bli robust och pålitlig.
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • PhD Emblem, Kyrre E., Department of Diagnostic Physics, Oslo University Hospital, Oslo
organization
publishing date
type
Thesis
publication status
published
subject
keywords
contrast agent, cerebral blood flow, cerebral blood volume, mean transit time, perfusion, dynamic susceptibility contrast MRI, magnetic susceptibility
pages
181 pages
publisher
Naturvetenskapliga fakulteten, Lunds universitet
defense location
Demonstrationsrum 10, Bild och Funktion, Röntgenavd., Plan 4 Centralblocket, Skånes universitetssjukhus i Lund, Entrégatan 7, Lund
defense date
2019-03-01 09:00:00
ISBN
978-91-7753-972-8
978-91-7753-973-5
language
English
LU publication?
yes
id
971ef621-b42a-47ef-a72f-315e7b783b08
date added to LUP
2019-02-04 09:08:09
date last changed
2019-02-04 14:14:53
@phdthesis{971ef621-b42a-47ef-a72f-315e7b783b08,
  abstract     = {{Exchange of oxygen and nutrients between blood and tissue occurs at the capillary level of the blood system. The blood volume flow rate in the capillaries is often referred to as perfusion, and knowledge about perfusion provides important information about the function and viability of the tissue, for example, in patients with ischaemic stroke, cancer, and neurodegenerative diseases.<br/><br/>Dynamic susceptibility contrast magnetic resonance imaging (DSC–MRI) is the basic data collection approach used to obtain perfusion information from the studies reported in this doctoral thesis. The approach shows the advantage of providing estimates of not only brain perfusion, or cerebral blood flow (CBF), but also cerebral blood volume (CBV) and mean transit time (MTT). All of these parameters are required for a comprehensive description of microcirculation. When using standard implementations of DSC–MRI image acquisition and post-processing routines, the CBF and CBV values are often overestimated. In DSC–MRI, a contrast agent (CA) bolus is injected intravenously in an arm vein and is subsequently tracked by rapid imaging when passing through the brain. To calculate CBF, CBV, and MTT, CA concentration information from both tissue and blood is required. The main problem of DSC–MRI is estimating reliable CA concentration levels in tissue and artery simultaneously. Relatedly, if transverse relaxivity-based information is used, then the response to the CA, in terms of the change in relaxation rate, ΔR2∗, differs between blood and tissue. Additionally, there is a non-linear dependence on CA concentration in whole blood. Another issue related to estimations of blood concentration is the practical difficulty of finding a voxel containing only blood, implying that the concentration time curve representing blood will be affected by the surrounding tissue, possibly influencing both the shape of the curve and the absolute levels of estimated concentrations. <br/><br/>One approach is to obtain CBV estimates with alternative methods, where contrast agent concentration is quantified using the longitudinal relaxation time, T1, or by using a special MRI pulse sequence designed to study the blood contribution to the MRI signal. The information from these additional CBV estimates is used to calibrate the conventional DSC–MRI data. This approach provided perfusion results with the expected absolute levels but showed moderate repeatability and low correlation with arterial spin labelling (ASL), used as a reference perfusion imaging method. Another study included in the context of this doctoral thesis dealt with the issue of partial-volume effects in the voxel selected to represent blood. By rescaling the area under the curve (AUC) of the concentration-versus-time curve measured in an artery (assumed to show the desired shape), with the AUC of a large vein, measured under circumstances more favourable for blood-data registration, CBF and CBV values were calibrated. This method aims primarily to correct for partial volume effects in the blood voxel (i.e. it does not directly address relaxivity issues). An observation of interest in this context was that absolute perfusion levels similar to what was expected from literature data were obtained. Furthermore, the repeatability was more promising using this approach, compared to the ones described above. <br/><br/>The phase of the MRI signal is related to the magnetic field strength, which, in turn, is related to the magnetic susceptibility. As the CA alters the magnetic susceptibility, it should, in principle, be possible to obtain information about CA concentration using MRI phase information. This approach was used in three of the studies described in this thesis, for calculation of perfusionrelated parameters in relative and absolute terms. These studies indicated that information about (or related to) magnetic susceptibility is a promising method for estimating CA concentration, whereas a number of methodological issues still need to be resolved or further investigated. It was also shown that the shape of an arterial ΔR2* curve, based on DSC–MRI data, displayed a shape similar to the corresponding curve obtained by using magnetic susceptibility information for assessment of concentration. Thus, the shape of a typical arterial blood concentration curve used in a standard DSC–MRI experiment can probably be regarded reasonably reliable. However, the AUC is likely to be underestimated because of partial-volume effects.<br/>}},
  author       = {{Lind, Emelie}},
  isbn         = {{978-91-7753-972-8}},
  keywords     = {{contrast agent; cerebral blood flow; cerebral blood volume; mean transit time; perfusion; dynamic susceptibility contrast MRI; magnetic susceptibility}},
  language     = {{eng}},
  publisher    = {{Naturvetenskapliga fakulteten, Lunds universitet}},
  school       = {{Lund University}},
  title        = {{MRI Perfusion Measurements using Magnetic Susceptibility Effects: : Calibration Approaches and Contrast Agent Quantification}},
  url          = {{https://lup.lub.lu.se/search/files/57600716/PhD_Thesis_Summary_Emelie_Lind.pdf}},
  year         = {{2019}},
}