Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Structure of microemulsion - ABA triblock copolymer networks

Sarraguca, J. M. G. ; Pais, A. A. C. C. and Linse, Per LU (2008) In Langmuir 24(19). p.11153-11163
Abstract
Structural equilibrium properties of transient networks formed by microemulsion droplets and ABA triblock copolymers in solution have been studied by Monte Carlo simulation. The droplets were represented by soft spheres, and the polymers were represented by junctions connected by harmonic bonds with an angular potential regulating the intrinsic chain stiffness. The interaction parameters were selected such that the end A-blocks were localized inside the droplets and the middle B-block in the continuous phase. The influence of (i) the polymer concentration, (ii) the polymer stiffness, and (iii) the contour length of the middle B-block on the formation and the structure of the microemulsion-polymer network were investigated using polymer... (More)
Structural equilibrium properties of transient networks formed by microemulsion droplets and ABA triblock copolymers in solution have been studied by Monte Carlo simulation. The droplets were represented by soft spheres, and the polymers were represented by junctions connected by harmonic bonds with an angular potential regulating the intrinsic chain stiffness. The interaction parameters were selected such that the end A-blocks were localized inside the droplets and the middle B-block in the continuous phase. The influence of (i) the polymer concentration, (ii) the polymer stiffness, and (iii) the contour length of the middle B-block on the formation and the structure of the microemulsion-polymer network were investigated using polymer end-to-end separation probability distribution functions, droplet radial distribution functions, droplet-droplet nearest-neighbor probability distribution functions, and network connectivity indicators. An increase of the polymer-droplet number ratio had a strong impact on the network formation. Under typical conditions and at an intermediate polymer-droplet number ratio, (i) the fraction of polymers forming bridges between droplets increased from essentially zero to unity and (ii) the fraction of polymers that were forming loops decreased as the ratio of the polymer end-to-end separation and the surface-to-surface separation between neighboring droplets for a hypothetical homogeneous droplet distribution was increased from 0.5 to 2. For long and flexible polymers, a mesoscopic segregation triggered by a depletion attraction between droplets appeared, and, furthermore, for sufficiently stiff chains, only bridge conformations occurred. The percolation probability could be represented as a function of the average droplet cluster size only, across all systems. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Langmuir
volume
24
issue
19
pages
11153 - 11163
publisher
The American Chemical Society (ACS)
external identifiers
  • wos:000259673500092
  • scopus:54549112076
ISSN
0743-7463
DOI
10.1021/la801658k
language
English
LU publication?
yes
id
9b9bc86d-8577-486e-a99d-8c11bea1d1b3 (old id 1286030)
date added to LUP
2016-04-01 12:29:55
date last changed
2022-01-27 05:54:15
@article{9b9bc86d-8577-486e-a99d-8c11bea1d1b3,
  abstract     = {{Structural equilibrium properties of transient networks formed by microemulsion droplets and ABA triblock copolymers in solution have been studied by Monte Carlo simulation. The droplets were represented by soft spheres, and the polymers were represented by junctions connected by harmonic bonds with an angular potential regulating the intrinsic chain stiffness. The interaction parameters were selected such that the end A-blocks were localized inside the droplets and the middle B-block in the continuous phase. The influence of (i) the polymer concentration, (ii) the polymer stiffness, and (iii) the contour length of the middle B-block on the formation and the structure of the microemulsion-polymer network were investigated using polymer end-to-end separation probability distribution functions, droplet radial distribution functions, droplet-droplet nearest-neighbor probability distribution functions, and network connectivity indicators. An increase of the polymer-droplet number ratio had a strong impact on the network formation. Under typical conditions and at an intermediate polymer-droplet number ratio, (i) the fraction of polymers forming bridges between droplets increased from essentially zero to unity and (ii) the fraction of polymers that were forming loops decreased as the ratio of the polymer end-to-end separation and the surface-to-surface separation between neighboring droplets for a hypothetical homogeneous droplet distribution was increased from 0.5 to 2. For long and flexible polymers, a mesoscopic segregation triggered by a depletion attraction between droplets appeared, and, furthermore, for sufficiently stiff chains, only bridge conformations occurred. The percolation probability could be represented as a function of the average droplet cluster size only, across all systems.}},
  author       = {{Sarraguca, J. M. G. and Pais, A. A. C. C. and Linse, Per}},
  issn         = {{0743-7463}},
  language     = {{eng}},
  number       = {{19}},
  pages        = {{11153--11163}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Langmuir}},
  title        = {{Structure of microemulsion - ABA triblock copolymer networks}},
  url          = {{http://dx.doi.org/10.1021/la801658k}},
  doi          = {{10.1021/la801658k}},
  volume       = {{24}},
  year         = {{2008}},
}