Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Protein diffusion in crowded electrolyte solutions

Roosen-Runge, Felix LU ; Hennig, Marcus ; Seydel, Tilo ; Zhang, Fajun ; Skoda, Maximilian W.A. ; Zorn, Stefan ; Jacobs, Robert M.J. ; Maccarini, Marco ; Fouquet, Peter and Schreiber, Frank (2010) In Biochimica et Biophysica Acta - Proteins and Proteomics 1804(1). p.68-75
Abstract

We report on a combined cold neutron backscattering and spin-echo study of the short-range and long-range nanosecond diffusion of the model globular protein bovine serum albumin (BSA) in aqueous solution as a function of protein concentration and NaCl salt concentration. Complementary small angle X-ray scattering data are used to obtain information on the correlations of the proteins in solution. Particular emphasis is put on the effect of crowding, i.e. conditions under which the proteins cannot be considered as objects independent of each other. We thus address the question at which concentration this crowding starts to influence the static and in particular also the dynamical behaviour. We also briefly discuss qualitatively which... (More)

We report on a combined cold neutron backscattering and spin-echo study of the short-range and long-range nanosecond diffusion of the model globular protein bovine serum albumin (BSA) in aqueous solution as a function of protein concentration and NaCl salt concentration. Complementary small angle X-ray scattering data are used to obtain information on the correlations of the proteins in solution. Particular emphasis is put on the effect of crowding, i.e. conditions under which the proteins cannot be considered as objects independent of each other. We thus address the question at which concentration this crowding starts to influence the static and in particular also the dynamical behaviour. We also briefly discuss qualitatively which charge effects, i.e. effects due to the interplay of charged molecules in an electrolyte solution, may be anticipated. Both the issue of crowding as well as that of charge effects are particularly relevant for proteins and their function under physiological conditions, where the protein volume fraction can be up to approximately 40% and salt ions are ubiquitous. The interpretation of the data is put in the context of existing studies on related systems and of existing theoretical models.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
Cold neutron backscattering spectroscopy, Globular proteins in aqueous solution, Neutron spin echo spectroscopy, Quasi-elastic neutron scattering, Salt ions
in
Biochimica et Biophysica Acta - Proteins and Proteomics
volume
1804
issue
1
pages
8 pages
publisher
Elsevier
external identifiers
  • scopus:71649085800
  • pmid:19616646
ISSN
1570-9639
DOI
10.1016/j.bbapap.2009.07.003
language
English
LU publication?
no
id
9bcd2dd0-e0e8-4995-89c0-31e0a11d9182
date added to LUP
2018-12-17 09:50:38
date last changed
2024-01-15 09:52:44
@article{9bcd2dd0-e0e8-4995-89c0-31e0a11d9182,
  abstract     = {{<p>We report on a combined cold neutron backscattering and spin-echo study of the short-range and long-range nanosecond diffusion of the model globular protein bovine serum albumin (BSA) in aqueous solution as a function of protein concentration and NaCl salt concentration. Complementary small angle X-ray scattering data are used to obtain information on the correlations of the proteins in solution. Particular emphasis is put on the effect of crowding, i.e. conditions under which the proteins cannot be considered as objects independent of each other. We thus address the question at which concentration this crowding starts to influence the static and in particular also the dynamical behaviour. We also briefly discuss qualitatively which charge effects, i.e. effects due to the interplay of charged molecules in an electrolyte solution, may be anticipated. Both the issue of crowding as well as that of charge effects are particularly relevant for proteins and their function under physiological conditions, where the protein volume fraction can be up to approximately 40% and salt ions are ubiquitous. The interpretation of the data is put in the context of existing studies on related systems and of existing theoretical models.</p>}},
  author       = {{Roosen-Runge, Felix and Hennig, Marcus and Seydel, Tilo and Zhang, Fajun and Skoda, Maximilian W.A. and Zorn, Stefan and Jacobs, Robert M.J. and Maccarini, Marco and Fouquet, Peter and Schreiber, Frank}},
  issn         = {{1570-9639}},
  keywords     = {{Cold neutron backscattering spectroscopy; Globular proteins in aqueous solution; Neutron spin echo spectroscopy; Quasi-elastic neutron scattering; Salt ions}},
  language     = {{eng}},
  month        = {{01}},
  number       = {{1}},
  pages        = {{68--75}},
  publisher    = {{Elsevier}},
  series       = {{Biochimica et Biophysica Acta - Proteins and Proteomics}},
  title        = {{Protein diffusion in crowded electrolyte solutions}},
  url          = {{http://dx.doi.org/10.1016/j.bbapap.2009.07.003}},
  doi          = {{10.1016/j.bbapap.2009.07.003}},
  volume       = {{1804}},
  year         = {{2010}},
}