Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Presence of Maximal Characteristic Time in Photoluminescence Blinking of MAPbI3 Perovskite

Seth, Sudipta LU ; Podshivaylov, Eduard A. ; Li, Jun LU orcid ; Gerhard, Marina LU ; Kiligaridis, Alexander LU ; Frantsuzov, Pavel A. LU and Scheblykin, Ivan G. LU orcid (2021) In Advanced Energy Materials 11(44).
Abstract

Photoluminescence (PL) blinking is a common phenomenon in nanostructured semiconductors associated with charge trapping and defect dynamics. PL blinking kinetics exhibit very broadly distributed timescales. The traditionally employed analysis of probability distribution of ON and OFF events suffers from ambiguities in their determination in complex PL traces making its suitability questionable. Here, the statistically correct power spectral density (PSD) estimation method applicable for fluctuations of any complexity is employed. PSDs of the blinking traces of submicrometer MAPbI3 crystals at high frequencies follow power law with excitation power density dependent parameters. However, at frequencies less than 0.3 Hz, the... (More)

Photoluminescence (PL) blinking is a common phenomenon in nanostructured semiconductors associated with charge trapping and defect dynamics. PL blinking kinetics exhibit very broadly distributed timescales. The traditionally employed analysis of probability distribution of ON and OFF events suffers from ambiguities in their determination in complex PL traces making its suitability questionable. Here, the statistically correct power spectral density (PSD) estimation method applicable for fluctuations of any complexity is employed. PSDs of the blinking traces of submicrometer MAPbI3 crystals at high frequencies follow power law with excitation power density dependent parameters. However, at frequencies less than 0.3 Hz, the majority of the PSDs saturate revealing the presence of a maximal characteristic timescale of blinking in the range of 0.5–10 s independently of the excitation power density. Super-resolution optical microscopy shows the characteristic timescale to be an inherent material property independent of polycrystallinity. Thus, for the first time the maximum timescale of the multiscale blinking behavior of nanoparticles is observed demonstrating that the power law statistics are not universal for semiconductors. It is proposed that the viscoelasticity of metal-halide perovskites can limit the maximum timescale for the PL fluctuations by limiting the memory of preceded deformations/re-arrangements of the crystal lattice.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
autocorrelation, blinking, characteristic times, halide perovskites, power spectral densities, super-resolution microscopy, viscoelasticity
in
Advanced Energy Materials
volume
11
issue
44
article number
2102449
publisher
Wiley-Blackwell
external identifiers
  • scopus:85116914476
ISSN
1614-6832
DOI
10.1002/aenm.202102449
language
English
LU publication?
yes
additional info
Publisher Copyright: © 2021 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
id
9c553773-1cc5-4fb9-850e-a6d65bf0b690
date added to LUP
2021-10-27 13:33:45
date last changed
2023-11-08 22:26:59
@article{9c553773-1cc5-4fb9-850e-a6d65bf0b690,
  abstract     = {{<p>Photoluminescence (PL) blinking is a common phenomenon in nanostructured semiconductors associated with charge trapping and defect dynamics. PL blinking kinetics exhibit very broadly distributed timescales. The traditionally employed analysis of probability distribution of ON and OFF events suffers from ambiguities in their determination in complex PL traces making its suitability questionable. Here, the statistically correct power spectral density (PSD) estimation method applicable for fluctuations of any complexity is employed. PSDs of the blinking traces of submicrometer MAPbI<sub>3</sub> crystals at high frequencies follow power law with excitation power density dependent parameters. However, at frequencies less than 0.3 Hz, the majority of the PSDs saturate revealing the presence of a maximal characteristic timescale of blinking in the range of 0.5–10 s independently of the excitation power density. Super-resolution optical microscopy shows the characteristic timescale to be an inherent material property independent of polycrystallinity. Thus, for the first time the maximum timescale of the multiscale blinking behavior of nanoparticles is observed demonstrating that the power law statistics are not universal for semiconductors. It is proposed that the viscoelasticity of metal-halide perovskites can limit the maximum timescale for the PL fluctuations by limiting the memory of preceded deformations/re-arrangements of the crystal lattice.</p>}},
  author       = {{Seth, Sudipta and Podshivaylov, Eduard A. and Li, Jun and Gerhard, Marina and Kiligaridis, Alexander and Frantsuzov, Pavel A. and Scheblykin, Ivan G.}},
  issn         = {{1614-6832}},
  keywords     = {{autocorrelation; blinking; characteristic times; halide perovskites; power spectral densities; super-resolution microscopy; viscoelasticity}},
  language     = {{eng}},
  number       = {{44}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Advanced Energy Materials}},
  title        = {{Presence of Maximal Characteristic Time in Photoluminescence Blinking of MAPbI<sub>3</sub> Perovskite}},
  url          = {{http://dx.doi.org/10.1002/aenm.202102449}},
  doi          = {{10.1002/aenm.202102449}},
  volume       = {{11}},
  year         = {{2021}},
}