Development of Optically Communicating Nanowire-based III-V Devices : Optical broadcasting for artificial neural networks
(2025)- Abstract
- This thesis presents the development and study of a flexible and Silicon-chip compatible integration of III–V nanowire (NW) optoelectronic components in network circuits, where communication is done via the broadcasting of light signals. This includes an investigation into how neural processing behaviours can be emulated using on-chip photonic circuits. Both experimental works that demonstrate the first on-chip communication between nano-optoelectronic components, and modelling of the optical field emission from such components are presented.
Through the development and characterisation of indium phosphide (InP) NW device pairs, optical communication across separations of up to 3 micron in air is experimentally demonstrated, which is... (More) - This thesis presents the development and study of a flexible and Silicon-chip compatible integration of III–V nanowire (NW) optoelectronic components in network circuits, where communication is done via the broadcasting of light signals. This includes an investigation into how neural processing behaviours can be emulated using on-chip photonic circuits. Both experimental works that demonstrate the first on-chip communication between nano-optoelectronic components, and modelling of the optical field emission from such components are presented.
Through the development and characterisation of indium phosphide (InP) NW device pairs, optical communication across separations of up to 3 micron in air is experimentally demonstrated, which is the first step towards larger broadcasting networks. We estimate that significantly larger communication distances are possible through component performance optimisation, and by embedded waveguide materials. With yields up to 80%, the presented fabrication pipeline allows scalable assembly of heterogeneous NWs, precisely positioned in designed assemblies of tens to hundreds. We also explore the integration of photochromic dye as an all-optical localised memory medium in between the optoelectronic III-V NWs. The optically responsive behaviour of the prototype devices suggests their potential as synaptic memory elements in nanowire-based neurons.
Simulated work complements these developments by exploring how the NW optoelectronic components can form the basis of various broadcasting networks. In randomly oriented assemblies placed on a hexagonal grid, simulated InP emitter-receiver nodes were used a trainable echo-state network (ESNs), capable of mimicking a chaotic time series after minimal training. Both temporal and amplitude components of the time-series were preserved in larger networks, with smaller networks mostly replicating the frequency. The further use of directional Yagi-Uda metal nanoantenna, with added asymmetric director components, enables the directing and splitting of light from NW emitters, allowing for tuneable weights between them. This can be used to create compact layers of neural nodes with complex patterns of inhibiting and exciting weights between the nodes.
Together, these results demonstrate the feasibility of integrating nanophotonic components into either geometrically structured or trainable neural networks, building towards circuits that can for example mimic important navigation functions of the insect brain. (Less) - Abstract (Swedish)
- Denna avhandling presenterar utvecklingen och studiet av en flexibel och kiselchip-kompatibel integration av III–V nanotrådsbaserade (NW) optoelektroniska komponenter i nätverkskretsar, där kommunikation sker genom utsändning av ljussignaler. Detta innefattar en undersökning av hur neurala bearbetningsbeteenden kan efterliknas med hjälp av fotoniska kretsar på chip. Både experimentella resultat som demonstrerar den första kommunikation på chip mellan nano-optoelektroniska komponenter, samt modellering av den optiska fältemissionen från sådana komponenter, presenteras.
Genom utveckling och karakterisering av indiumfosfid (InP) nanotrådsenheter i par demonstreras experimentellt optisk kommunikation över avstånd upp till 3 mikrometer i... (More) - Denna avhandling presenterar utvecklingen och studiet av en flexibel och kiselchip-kompatibel integration av III–V nanotrådsbaserade (NW) optoelektroniska komponenter i nätverkskretsar, där kommunikation sker genom utsändning av ljussignaler. Detta innefattar en undersökning av hur neurala bearbetningsbeteenden kan efterliknas med hjälp av fotoniska kretsar på chip. Både experimentella resultat som demonstrerar den första kommunikation på chip mellan nano-optoelektroniska komponenter, samt modellering av den optiska fältemissionen från sådana komponenter, presenteras.
Genom utveckling och karakterisering av indiumfosfid (InP) nanotrådsenheter i par demonstreras experimentellt optisk kommunikation över avstånd upp till 3 mikrometer i luft, vilket utgör ett första steg mot större sändningsnätverk. Vi uppskattar att betydligt längre kommunikationsavstånd är möjliga genom optimering av komponenternas prestanda samt genom införande av inbäddade vågledarmaterial. Med en tillverkningsutbyte på upp till 80 % möjliggör den presenterade tillverkningskedjan skalbar sammansättning av heterogena nanotrådar, exakt positionerade i förutbestämda arrangemang med tiotals till hundratals komponenter. Vidare undersöks integrationen av fotokroma färgämnen som ett helt optiskt, lokaliserat minnesmedium mellan de optoelektroniska III–V-nanotrådarna. Prototypernas optiskt responsiva beteende indikerar deras potential som synaptiska minneskomponenter i nanotrådsbaserade neuroner.
Simulerade studier kompletterar dessa utvecklingar genom att undersöka hur de optoelektroniska nanotrådskomponenterna kan utgöra grunden för olika typer av sändningsnätverk. I slumpmässigt orienterade konfigurationer på ett hexagonalt rutnät användes simulerade InP sändare–mottagarnoder som träningsbara ekotillståndsnätverk (ESN), kapabla att efterlikna ett kaotiskt tidsserieförlopp efter minimal träning. Både den temporala och amplitudmässiga strukturen hos tidsserien bibehölls i större nätverk, medan mindre nätverk huvudsakligen reproducerade frekvensinnehållet. Vidare möjliggör användning av riktade Yagi–Uda nanoantenner i metall, med asymmetriska direktorkomponenter, styrning och uppdelning av ljus från nanotrådssändare, vilket tillåter inställbara vikter mellan dem. Detta kan användas för att skapa kompakta skikt av neurala noder med komplexa mönster av hämmande och stimulerande kopplingar.
Tillsammans visar dessa resultat på möjligheten att integrera nanofotoniska komponenter i såväl geometriskt strukturerade som träningsbara neurala nätverk, vilket utgör ett steg mot kretsar som till exempel kan efterlikna viktiga navigationsfunktioner i insekters hjärnor. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/9dfafcda-8985-4f08-932d-a6de105c9444
- author
- Flodgren, Vidar LU
- supervisor
-
- Anders Mikkelsen LU
- Cord Arnold LU
- Heiner Linke LU
- opponent
-
- Professor Strain, Michael, University of Strathclyde, Glasgow
- organization
- alternative title
- Utveckling av optiskt kommunicerande nanotrådsbaserade III–V-enheter : Optisk sändning för artificiella neurala nätverk.
- publishing date
- 2025-05-19
- type
- Thesis
- publication status
- published
- subject
- keywords
- III-V, Nanowire, Nanofabrication, Optoelectronics, FDTD, Fysicumarkivet A:2025:Flodgren, III-V, Nanowire, Nanofabrication, Optoelectronics, FDTD
- pages
- 260 pages
- publisher
- Lund University
- defense location
- Rydbergsalen, Department of Physics, Lund University. Join via Zoom: https://lu-se.zoom.us/s/64970974551
- defense date
- 2025-06-12 13:00:00
- ISBN
- 978-91-8104-555-0
- 978-91-8104-556-7
- project
- Insect-Brain inspired Neuromorphic Nanophotonics
- Development of Optically Communicating Nanowire-based III-V Devices: Optical broadcasting for artificial neural networks
- Development of Optically Communicating Nanowire-based III-V Devices: Optical broadcasting for artificial neural networks
- language
- English
- LU publication?
- yes
- id
- 9dfafcda-8985-4f08-932d-a6de105c9444
- date added to LUP
- 2025-05-19 12:32:30
- date last changed
- 2025-05-28 08:42:59
@phdthesis{9dfafcda-8985-4f08-932d-a6de105c9444, abstract = {{This thesis presents the development and study of a flexible and Silicon-chip compatible integration of III–V nanowire (NW) optoelectronic components in network circuits, where communication is done via the broadcasting of light signals. This includes an investigation into how neural processing behaviours can be emulated using on-chip photonic circuits. Both experimental works that demonstrate the first on-chip communication between nano-optoelectronic components, and modelling of the optical field emission from such components are presented.<br/>Through the development and characterisation of indium phosphide (InP) NW device pairs, optical communication across separations of up to 3 micron in air is experimentally demonstrated, which is the first step towards larger broadcasting networks. We estimate that significantly larger communication distances are possible through component performance optimisation, and by embedded waveguide materials. With yields up to 80%, the presented fabrication pipeline allows scalable assembly of heterogeneous NWs, precisely positioned in designed assemblies of tens to hundreds. We also explore the integration of photochromic dye as an all-optical localised memory medium in between the optoelectronic III-V NWs. The optically responsive behaviour of the prototype devices suggests their potential as synaptic memory elements in nanowire-based neurons.<br/>Simulated work complements these developments by exploring how the NW optoelectronic components can form the basis of various broadcasting networks. In randomly oriented assemblies placed on a hexagonal grid, simulated InP emitter-receiver nodes were used a trainable echo-state network (ESNs), capable of mimicking a chaotic time series after minimal training. Both temporal and amplitude components of the time-series were preserved in larger networks, with smaller networks mostly replicating the frequency. The further use of directional Yagi-Uda metal nanoantenna, with added asymmetric director components, enables the directing and splitting of light from NW emitters, allowing for tuneable weights between them. This can be used to create compact layers of neural nodes with complex patterns of inhibiting and exciting weights between the nodes.<br/>Together, these results demonstrate the feasibility of integrating nanophotonic components into either geometrically structured or trainable neural networks, building towards circuits that can for example mimic important navigation functions of the insect brain.}}, author = {{Flodgren, Vidar}}, isbn = {{978-91-8104-555-0}}, keywords = {{III-V; Nanowire; Nanofabrication; Optoelectronics; FDTD; Fysicumarkivet A:2025:Flodgren; III-V; Nanowire; Nanofabrication; Optoelectronics; FDTD}}, language = {{eng}}, month = {{05}}, publisher = {{Lund University}}, school = {{Lund University}}, title = {{Development of Optically Communicating Nanowire-based III-V Devices : Optical broadcasting for artificial neural networks}}, url = {{https://lup.lub.lu.se/search/files/219494306/VidarFlodgren_PhDThesis_2025-05-19_E-Spik.pdf}}, year = {{2025}}, }