Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

HAMLET, a human milk protein-lipid complex, modulates amoxicillin induced changes in an ex vivo biofilm model of the oral microbiome.

Brar, Navdeep Kaur LU ; Dhariwal, Achal ; Shekhar, Sudhanshu ; Junges, Roger ; Hakansson, Anders P LU orcid and Petersen, Fernanda Cristina (2024) In Frontiers in Microbiology 15. p.1-11
Abstract

Challenges from infections caused by biofilms and antimicrobial resistance highlight the need for novel antimicrobials that work in conjunction with antibiotics and minimize resistance risk. In this study we investigated the composite effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells), a human milk protein-lipid complex and amoxicillin on microbial ecology using an ex vivo oral biofilm model with pooled saliva samples. HAMLET was chosen due to its multi-targeted antimicrobial mechanism, together with its synergistic effect with antibiotics on single species pathogens, and low risk of resistance development. The combination of HAMLET and low concentrations of amoxicillin significantly reduced biofilm viability, while... (More)

Challenges from infections caused by biofilms and antimicrobial resistance highlight the need for novel antimicrobials that work in conjunction with antibiotics and minimize resistance risk. In this study we investigated the composite effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells), a human milk protein-lipid complex and amoxicillin on microbial ecology using an ex vivo oral biofilm model with pooled saliva samples. HAMLET was chosen due to its multi-targeted antimicrobial mechanism, together with its synergistic effect with antibiotics on single species pathogens, and low risk of resistance development. The combination of HAMLET and low concentrations of amoxicillin significantly reduced biofilm viability, while each of them alone had little or no impact. Using a whole metagenomics approach, we found that the combination promoted a remarkable shift in overall microbial composition compared to the untreated samples. A large proportion of the bacterial species in the combined treatment were Lactobacillus crispatus, a species with probiotic effects, whereas it was only detected in a minor fraction in untreated samples. Although resistome analysis indicated no major shifts in alpha-diversity, the results showed the presence of TEM beta-lactamase genes in low proportions in all treated samples but absence in untreated samples. Our study illustrates HAMLET's capability to alter the effects of amoxicillin on the oral microbiome and potentially favor the growth of selected probiotic bacteria when in combination. The findings extend previous knowledge on the combined effects of HAMLET and antibiotics against target pathogens to include potential modulatory effects on polymicrobial biofilms of human origin.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Frontiers in Microbiology
volume
15
article number
1406190
pages
1 - 11
publisher
Frontiers Media S. A.
external identifiers
  • scopus:85199068915
  • pmid:39101559
ISSN
1664-302X
DOI
10.3389/fmicb.2024.1406190
language
English
LU publication?
yes
additional info
Copyright © 2024 Brar, Dhariwal, Shekhar, Junges, Hakansson and Petersen.
id
9ebff760-0f23-4733-8384-45a47771fd63
date added to LUP
2024-09-09 12:44:47
date last changed
2024-09-10 04:00:42
@article{9ebff760-0f23-4733-8384-45a47771fd63,
  abstract     = {{<p>Challenges from infections caused by biofilms and antimicrobial resistance highlight the need for novel antimicrobials that work in conjunction with antibiotics and minimize resistance risk. In this study we investigated the composite effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells), a human milk protein-lipid complex and amoxicillin on microbial ecology using an  ex vivo oral biofilm model with pooled saliva samples. HAMLET was chosen due to its multi-targeted antimicrobial mechanism, together with its synergistic effect with antibiotics on single species pathogens, and low risk of resistance development. The combination of HAMLET and low concentrations of amoxicillin significantly reduced biofilm viability, while each of them alone had little or no impact. Using a whole metagenomics approach, we found that the combination promoted a remarkable shift in overall microbial composition compared to the untreated samples. A large proportion of the bacterial species in the combined treatment were Lactobacillus crispatus, a species with probiotic effects, whereas it was only detected in a minor fraction in untreated samples. Although resistome analysis indicated no major shifts in alpha-diversity, the results showed the presence of  TEM beta-lactamase genes in low proportions in all treated samples but absence in untreated samples. Our study illustrates HAMLET's capability to alter the effects of amoxicillin on the oral microbiome and potentially favor the growth of selected probiotic bacteria when in combination. The findings extend previous knowledge on the combined effects of HAMLET and antibiotics against target pathogens to include potential modulatory effects on polymicrobial biofilms of human origin. </p>}},
  author       = {{Brar, Navdeep Kaur and Dhariwal, Achal and Shekhar, Sudhanshu and Junges, Roger and Hakansson, Anders P and Petersen, Fernanda Cristina}},
  issn         = {{1664-302X}},
  language     = {{eng}},
  pages        = {{1--11}},
  publisher    = {{Frontiers Media S. A.}},
  series       = {{Frontiers in Microbiology}},
  title        = {{HAMLET, a human milk protein-lipid complex, modulates amoxicillin induced changes in an 
        ex vivo biofilm model of the oral microbiome.}},
  url          = {{http://dx.doi.org/10.3389/fmicb.2024.1406190}},
  doi          = {{10.3389/fmicb.2024.1406190}},
  volume       = {{15}},
  year         = {{2024}},
}