Advanced

Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control

Wagner, Darcy E. LU ; Jones, Andrew D.; Zhou, Huan and Bhaduri, Sarit B. (2013) In Materials Science and Engineering C 33(3). p.1710-1719
Abstract

Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave... (More)

Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature. Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM).

(Less)
Please use this url to cite or link to this publication:
author
publishing date
type
Contribution to journal
publication status
published
keywords
Biphasic calcium phosphates, Calcium pyrophosphate, Hydroxyapatite, Microwave sintering, Tissue engineering, Tricalcium phosphate
in
Materials Science and Engineering C
volume
33
issue
3
pages
1710 - 1719
publisher
Elsevier
external identifiers
  • scopus:84873409962
ISSN
0928-4931
DOI
10.1016/j.msec.2012.12.084
language
English
LU publication?
no
id
a1b4efcc-c4ae-44e4-942f-42d64c082ded
date added to LUP
2017-08-15 15:14:29
date last changed
2018-05-29 11:31:54
@article{a1b4efcc-c4ae-44e4-942f-42d64c082ded,
  abstract     = {<p>Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature. Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM).</p>},
  author       = {Wagner, Darcy E. and Jones, Andrew D. and Zhou, Huan and Bhaduri, Sarit B.},
  issn         = {0928-4931},
  keyword      = {Biphasic calcium phosphates,Calcium pyrophosphate,Hydroxyapatite,Microwave sintering,Tissue engineering,Tricalcium phosphate},
  language     = {eng},
  month        = {04},
  number       = {3},
  pages        = {1710--1719},
  publisher    = {Elsevier},
  series       = {Materials Science and Engineering C},
  title        = {Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control},
  url          = {http://dx.doi.org/10.1016/j.msec.2012.12.084},
  volume       = {33},
  year         = {2013},
}