Advanced

Improving Predictive Models of In-Stream Phosphorus Concentration Based on Nationally-Available Spatial Data Coverages

Scown, Murray LU ; McManus, Michael; Carson, John and Nietch, Christopher (2017) In Journal of the American Water Resources Association
Abstract
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and... (More)
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
epub
subject
keywords
water quality, spatial data, autocorrelation, statistical modelling, phosphorus (P), river
in
Journal of the American Water Resources Association
external identifiers
  • scopus:85021780053
  • wos:000407043700014
ISSN
1752-1688
DOI
10.1111/1752-1688.12543
language
English
LU publication?
yes
id
a36c8af0-416c-48ae-98c5-a08c814e335c
date added to LUP
2017-07-11 12:17:09
date last changed
2017-09-18 11:38:01
@article{a36c8af0-416c-48ae-98c5-a08c814e335c,
  abstract     = {Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.},
  author       = {Scown, Murray and McManus, Michael and Carson, John and Nietch, Christopher},
  issn         = {1752-1688},
  keyword      = {water quality,spatial data,autocorrelation,statistical modelling,phosphorus (P),river},
  language     = {eng},
  month        = {07},
  series       = {Journal of the American Water Resources Association},
  title        = {Improving Predictive Models of In-Stream Phosphorus Concentration Based on Nationally-Available Spatial Data Coverages},
  url          = {http://dx.doi.org/10.1111/1752-1688.12543},
  year         = {2017},
}