Advanced

The tyranny of the averages and the indiscriminate use of risk factors in public health : The case of coronary heart disease

Merlo, Juan LU ; Mulinari, Shai LU ; Wemrell, Maria LU ; Subramanian, S V and Hedblad, Bo LU (2017) In SSM - Population Health 3. p.684-698
Abstract

Modern medicine is overwhelmed by a plethora of both established risk factors and novel biomarkers for diseases. The majority of this information is expressed by probabilistic measures of association such as the odds ratio (OR) obtained by calculating differences in average "risk" between exposed and unexposed groups. However, recent research demonstrates that even ORs of considerable magnitude are insufficient for assessing the ability of risk factors or biomarkers to distinguish the individuals who will develop the disease from those who will not. In regards to coronary heart disease (CHD), we already know that novel biomarkers add very little to the discriminatory accuracy (DA) of traditional risk factors. However, the value added by... (More)

Modern medicine is overwhelmed by a plethora of both established risk factors and novel biomarkers for diseases. The majority of this information is expressed by probabilistic measures of association such as the odds ratio (OR) obtained by calculating differences in average "risk" between exposed and unexposed groups. However, recent research demonstrates that even ORs of considerable magnitude are insufficient for assessing the ability of risk factors or biomarkers to distinguish the individuals who will develop the disease from those who will not. In regards to coronary heart disease (CHD), we already know that novel biomarkers add very little to the discriminatory accuracy (DA) of traditional risk factors. However, the value added by traditional risk factors alongside simple demographic variables such as age and sex has been the subject of less discussion. Moreover, in public health, we use the OR to calculate the population attributable fraction (PAF), although this measure fails to consider the DA of the risk factor it represents. Therefore, focusing on CHD and applying measures of DA, we re-examine the role of individual demographic characteristics, risk factors, novel biomarkers and PAFs in public health and epidemiology. In so doing, we also raise a more general criticism of the traditional risk factors' epidemiology. We investigated a cohort of 6103 men and women who participated in the baseline (1991-1996) of the Malmö Diet and Cancer study and were followed for 18 years. We found that neither traditional risk factors nor biomarkers substantially improved the DA obtained by models considering only age and sex. We concluded that the PAF measure provided insufficient information for the planning of preventive strategies in the population. We need a better understanding of the individual heterogeneity around the averages and, thereby, a fundamental change in the way we interpret risk factors in public health and epidemiology.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
coronary , Heart disease, Risk factors
in
SSM - Population Health
volume
3
pages
15 pages
publisher
Elsevier Limited
external identifiers
  • scopus:85028340407
DOI
10.1016/j.ssmph.2017.08.005
language
English
LU publication?
yes
id
a92444bc-4689-454b-b6ea-62bc58240d88
alternative location
http://www.sciencedirect.com/science/article/pii/S2352827317300757#
date added to LUP
2017-09-20 10:39:11
date last changed
2018-05-06 04:36:51
@article{a92444bc-4689-454b-b6ea-62bc58240d88,
  abstract     = {<p>Modern medicine is overwhelmed by a plethora of both established risk factors and novel biomarkers for diseases. The majority of this information is expressed by probabilistic measures of association such as the odds ratio (OR) obtained by calculating differences in average "risk" between exposed and unexposed groups. However, recent research demonstrates that even ORs of considerable magnitude are insufficient for assessing the ability of risk factors or biomarkers to distinguish the individuals who will develop the disease from those who will not. In regards to coronary heart disease (CHD), we already know that novel biomarkers add very little to the discriminatory accuracy (DA) of traditional risk factors. However, the value added by traditional risk factors alongside simple demographic variables such as age and sex has been the subject of less discussion. Moreover, in public health, we use the OR to calculate the population attributable fraction (PAF), although this measure fails to consider the DA of the risk factor it represents. Therefore, focusing on CHD and applying measures of DA, we re-examine the role of individual demographic characteristics, risk factors, novel biomarkers and PAFs in public health and epidemiology. In so doing, we also raise a more general criticism of the traditional risk factors' epidemiology. We investigated a cohort of 6103 men and women who participated in the baseline (1991-1996) of the Malmö Diet and Cancer study and were followed for 18 years. We found that neither traditional risk factors nor biomarkers substantially improved the DA obtained by models considering only age and sex. We concluded that the PAF measure provided insufficient information for the planning of preventive strategies in the population. We need a better understanding of the individual heterogeneity around the averages and, thereby, a fundamental change in the way we interpret risk factors in public health and epidemiology.</p>},
  author       = {Merlo, Juan and Mulinari, Shai and Wemrell, Maria and Subramanian, S V and Hedblad, Bo},
  keyword      = {coronary ,Heart disease,Risk factors},
  language     = {eng},
  month        = {12},
  pages        = {684--698},
  publisher    = {Elsevier Limited},
  series       = {SSM - Population Health},
  title        = {The tyranny of the averages and the indiscriminate use of risk factors in public health : The case of coronary heart disease},
  url          = {http://dx.doi.org/10.1016/j.ssmph.2017.08.005},
  volume       = {3},
  year         = {2017},
}