Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Crystal structure control in Au-free self-seeded InSb wire growth.

Mandl, Bernhard LU ; Dick Thelander, Kimberly LU ; Kriegner, Dominik ; Keplinger, Mario ; Bauer, Günther ; Stangl, Julian and Deppert, Knut LU orcid (2011) In Nanotechnology 22(14).
Abstract
In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio... (More)
In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Nanotechnology
volume
22
issue
14
article number
145603
publisher
IOP Publishing
external identifiers
  • wos:000287970000011
  • pmid:21346304
  • scopus:79952678162
  • pmid:21346304
ISSN
0957-4484
DOI
10.1088/0957-4484/22/14/145603
language
English
LU publication?
yes
id
a962379a-dff9-45f2-9b56-045273d263d8 (old id 1831417)
date added to LUP
2016-04-01 10:26:04
date last changed
2023-10-12 04:58:29
@article{a962379a-dff9-45f2-9b56-045273d263d8,
  abstract     = {{In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well.}},
  author       = {{Mandl, Bernhard and Dick Thelander, Kimberly and Kriegner, Dominik and Keplinger, Mario and Bauer, Günther and Stangl, Julian and Deppert, Knut}},
  issn         = {{0957-4484}},
  language     = {{eng}},
  number       = {{14}},
  publisher    = {{IOP Publishing}},
  series       = {{Nanotechnology}},
  title        = {{Crystal structure control in Au-free self-seeded InSb wire growth.}},
  url          = {{http://dx.doi.org/10.1088/0957-4484/22/14/145603}},
  doi          = {{10.1088/0957-4484/22/14/145603}},
  volume       = {{22}},
  year         = {{2011}},
}