Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Data-driven subclassification of ANCA-associated vasculitis : model-based clustering of a federated international cohort

Gisslander, Karl LU orcid ; White, Arthur ; Aslett, Louis ; Hrušková, Zdenka ; Lamprecht, Peter ; Musial, Jacek ; Nazeer, Jamsheela ; Ng, James ; O'Sullivan, Declan and Puéchal, Xavier , et al. (2024) In The Lancet Rheumatology 6(11). p.762-770
Abstract

Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a heterogenous autoimmune disease. While traditionally stratified into two conditions, granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA), the subclassification of ANCA-associated vasculitis is subject to continued debate. Here we aim to identify phenotypically distinct subgroups and develop a data-driven subclassification of ANCA-associated vasculitis, using a large real-world dataset. Methods: In the collaborative data reuse project FAIRVASC (Findable, Accessible, Interoperable, Reusable, Vasculitis), registry records of patients with ANCA-associated vasculitis were retrieved from six European vasculitis registries: the Czech... (More)

Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a heterogenous autoimmune disease. While traditionally stratified into two conditions, granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA), the subclassification of ANCA-associated vasculitis is subject to continued debate. Here we aim to identify phenotypically distinct subgroups and develop a data-driven subclassification of ANCA-associated vasculitis, using a large real-world dataset. Methods: In the collaborative data reuse project FAIRVASC (Findable, Accessible, Interoperable, Reusable, Vasculitis), registry records of patients with ANCA-associated vasculitis were retrieved from six European vasculitis registries: the Czech Registry of ANCA-associated vasculitis (Czech Republic), the French Vasculitis Study Group Registry (FVSG; France), the Joint Vasculitis Registry in German-speaking Countries (GeVas; Germany), the Polish Vasculitis Registry (POLVAS; Poland), the Irish Rare Kidney Disease Registry (RKD; Ireland), and the Skåne Vasculitis Cohort (Sweden). We performed model-based clustering of 17 mixed-type clinical variables using a parsimonious mixture of two latent Gaussian variable models. Clinical validation of the optimal cluster solution was made through summary statistics of the clusters' demography, phenotypic and serological characteristics, and outcome. The predictive value of models featuring the cluster affiliations were compared with classifications based on clinical diagnosis and ANCA specificity. People with lived experience were involved throughout the FAIRVASVC project. Findings: A total of 3868 patients diagnosed with ANCA-associated vasculitis between Nov 1, 1966, and March 1, 2023, were included in the study across the six registries (Czech Registry n=371, FVSG n=1780, GeVas n=135, POLVAS n=792, RKD n=439, and Skåne Vasculitis Cohort n=351). There were 2434 (62·9%) patients with GPA and 1434 (37·1%) with MPA. Mean age at diagnosis was 57·2 years (SD 16·4); 2006 (51·9%) of 3867 patients were men and 1861 (48·1%) were women. We identified five clusters, with distinct phenotype, biochemical presentation, and disease outcome. Three clusters were characterised by kidney involvement: one severe kidney cluster (555 [14·3%] of 3868 patients) with high C-reactive protein (CRP) and serum creatinine concentrations, and variable ANCA specificity (SK cluster); one myeloperoxidase (MPO)-ANCA-positive kidney involvement cluster (782 [20·2%]) with limited extrarenal disease (MPO-K cluster); and one proteinase 3 (PR3)-ANCA-positive kidney involvement cluster (683 [17·7%]) with widespread extrarenal disease (PR3-K cluster). Two clusters were characterised by relative absence of kidney involvement: one was a predominantly PR3-ANCA-positive cluster (1202 [31·1%]) with inflammatory multisystem disease (IMS cluster), and one was a cluster (646 [16·7%]) with predominantly ear–nose–throat involvement and low CRP, with mainly younger patients (YR cluster). Compared with models fitted with clinical diagnosis or ANCA status, cluster-assigned models demonstrated improved predictive power with respect to both patient and kidney survival. Interpretation: Our study reinforces the view that ANCA-associated vasculitis is not merely a binary construct. Data-driven subclassification of ANCA-associated vasculitis exhibits higher predictive value than current approaches for key outcomes. Funding: European Union's Horizon 2020 research and innovation programme under the European Joint Programme on Rare Diseases.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
contributor
LU and LU
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
The Lancet Rheumatology
volume
6
issue
11
pages
762 - 770
publisher
Lancet Publishing Group
external identifiers
  • scopus:85203174708
  • pmid:39182506
ISSN
2665-9913
DOI
10.1016/S2665-9913(24)00187-5
language
English
LU publication?
yes
additional info
Publisher Copyright: © 2024 Elsevier Ltd
id
aa00055c-c7c6-4f1f-a7ad-6ba9364ac3ba
date added to LUP
2024-10-10 09:23:03
date last changed
2025-07-04 08:53:58
@article{aa00055c-c7c6-4f1f-a7ad-6ba9364ac3ba,
  abstract     = {{<p>Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a heterogenous autoimmune disease. While traditionally stratified into two conditions, granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA), the subclassification of ANCA-associated vasculitis is subject to continued debate. Here we aim to identify phenotypically distinct subgroups and develop a data-driven subclassification of ANCA-associated vasculitis, using a large real-world dataset. Methods: In the collaborative data reuse project FAIRVASC (Findable, Accessible, Interoperable, Reusable, Vasculitis), registry records of patients with ANCA-associated vasculitis were retrieved from six European vasculitis registries: the Czech Registry of ANCA-associated vasculitis (Czech Republic), the French Vasculitis Study Group Registry (FVSG; France), the Joint Vasculitis Registry in German-speaking Countries (GeVas; Germany), the Polish Vasculitis Registry (POLVAS; Poland), the Irish Rare Kidney Disease Registry (RKD; Ireland), and the Skåne Vasculitis Cohort (Sweden). We performed model-based clustering of 17 mixed-type clinical variables using a parsimonious mixture of two latent Gaussian variable models. Clinical validation of the optimal cluster solution was made through summary statistics of the clusters' demography, phenotypic and serological characteristics, and outcome. The predictive value of models featuring the cluster affiliations were compared with classifications based on clinical diagnosis and ANCA specificity. People with lived experience were involved throughout the FAIRVASVC project. Findings: A total of 3868 patients diagnosed with ANCA-associated vasculitis between Nov 1, 1966, and March 1, 2023, were included in the study across the six registries (Czech Registry n=371, FVSG n=1780, GeVas n=135, POLVAS n=792, RKD n=439, and Skåne Vasculitis Cohort n=351). There were 2434 (62·9%) patients with GPA and 1434 (37·1%) with MPA. Mean age at diagnosis was 57·2 years (SD 16·4); 2006 (51·9%) of 3867 patients were men and 1861 (48·1%) were women. We identified five clusters, with distinct phenotype, biochemical presentation, and disease outcome. Three clusters were characterised by kidney involvement: one severe kidney cluster (555 [14·3%] of 3868 patients) with high C-reactive protein (CRP) and serum creatinine concentrations, and variable ANCA specificity (SK cluster); one myeloperoxidase (MPO)-ANCA-positive kidney involvement cluster (782 [20·2%]) with limited extrarenal disease (MPO-K cluster); and one proteinase 3 (PR3)-ANCA-positive kidney involvement cluster (683 [17·7%]) with widespread extrarenal disease (PR3-K cluster). Two clusters were characterised by relative absence of kidney involvement: one was a predominantly PR3-ANCA-positive cluster (1202 [31·1%]) with inflammatory multisystem disease (IMS cluster), and one was a cluster (646 [16·7%]) with predominantly ear–nose–throat involvement and low CRP, with mainly younger patients (YR cluster). Compared with models fitted with clinical diagnosis or ANCA status, cluster-assigned models demonstrated improved predictive power with respect to both patient and kidney survival. Interpretation: Our study reinforces the view that ANCA-associated vasculitis is not merely a binary construct. Data-driven subclassification of ANCA-associated vasculitis exhibits higher predictive value than current approaches for key outcomes. Funding: European Union's Horizon 2020 research and innovation programme under the European Joint Programme on Rare Diseases.</p>}},
  author       = {{Gisslander, Karl and White, Arthur and Aslett, Louis and Hrušková, Zdenka and Lamprecht, Peter and Musial, Jacek and Nazeer, Jamsheela and Ng, James and O'Sullivan, Declan and Puéchal, Xavier and Rutherford, Matthew and Segelmark, Mårten and Terrier, Benjamin and Tesar, Vladimir and Tesi, Michelangelo and Vaglio, Augusto and Wójcik, Krzysztof and Little, Mark A. and Mohammad, Aladdin J.}},
  issn         = {{2665-9913}},
  language     = {{eng}},
  number       = {{11}},
  pages        = {{762--770}},
  publisher    = {{Lancet Publishing Group}},
  series       = {{The Lancet Rheumatology}},
  title        = {{Data-driven subclassification of ANCA-associated vasculitis : model-based clustering of a federated international cohort}},
  url          = {{http://dx.doi.org/10.1016/S2665-9913(24)00187-5}},
  doi          = {{10.1016/S2665-9913(24)00187-5}},
  volume       = {{6}},
  year         = {{2024}},
}