Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

ALMA and VLA reveal the lukewarm chromospheres of the nearby red supergiants Antares and Betelgeuse

O'Gorman, E. ; Harper, G. M. ; Ohnaka, K. ; Feeney-Johansson, A. ; Wilkeneit-Braun, K. ; Brown, A. ; Guinan, E. F. ; Lim, J. ; Richards, A. M.S. and Ryde, N. LU orcid , et al. (2020) In Astronomy and Astrophysics 638.
Abstract

We first present spatially resolved ALMA and VLA continuum observations of the early-M red supergiant Antares to search for the presence of a chromosphere at radio wavelengths. We resolve the free-free emission of the Antares atmosphere at 11 unique wavelengths between 0.7 mm (ALMA band 8) and 10 cm (VLA S band). The projected angular diameter is found to continually increase with increasing wavelength, from a low of 50.7 mas at 0.7 mm up to a diameter of 431 mas at 10 cm, which corresponds to 1.35 and 11.6 times the photospheric angular diameter, respectively. All four ALMA measurements show that the shape of the atmosphere is elongated, with a flattening of 15% at a similar position angle. The disk-averaged gas temperature of the... (More)

We first present spatially resolved ALMA and VLA continuum observations of the early-M red supergiant Antares to search for the presence of a chromosphere at radio wavelengths. We resolve the free-free emission of the Antares atmosphere at 11 unique wavelengths between 0.7 mm (ALMA band 8) and 10 cm (VLA S band). The projected angular diameter is found to continually increase with increasing wavelength, from a low of 50.7 mas at 0.7 mm up to a diameter of 431 mas at 10 cm, which corresponds to 1.35 and 11.6 times the photospheric angular diameter, respectively. All four ALMA measurements show that the shape of the atmosphere is elongated, with a flattening of 15% at a similar position angle. The disk-averaged gas temperature of the atmosphere initially rises from a value of 2700 K at 1.35 R∗ (i.e., 0.35 R∗ above the photosphere) to a peak value of 3800 K at ∼2.5 R∗, after which it then more gradually decreases to 1650 K at 11.6 R∗. The rise in gas temperature between 1.35 R∗ and ∼2.5 R∗ is evidence for a chromospheric temperature rise above the photosphere of a red supergiant. We detect a clear change in the spectral index across the sampled wavelength range, with the flux density Sν ν1.42 between 0.7 mm and 1.4 cm, which we associate with chromosphere-dominated emission, while the flux density Sν ν0.8 between 4.3 cm and 10 cm, which we associate with wind-dominated emission. We show that the Antares MOLsphere is transparent at our observed wavelengths, and the lukewarm chromosphere that we detect is therefore real and not just an average of the cool MOLsphere and hot ultraviolet emitting gas. We then perform nonlocal thermal equilibrium modeling of the far-ultraviolet radiation field of another early-M red supergiant, Betelgeuse, and find that an additional hot (i.e., > 7000 K) chromospheric photoionization component with a much smaller filling factor must also exist throughout the chromospheres of these stars.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Radio continuum: stars, Stars: atmospheres, Stars: chromospheres, Stars: imaging, Stars: massive, Submillimeter: stars
in
Astronomy and Astrophysics
volume
638
article number
A65
publisher
EDP Sciences
external identifiers
  • scopus:85088664790
ISSN
0004-6361
DOI
10.1051/0004-6361/202037756
language
English
LU publication?
yes
id
ac1e7355-b815-42cc-b33d-73ec8f5575a2
date added to LUP
2020-08-05 09:22:01
date last changed
2024-04-03 09:35:14
@article{ac1e7355-b815-42cc-b33d-73ec8f5575a2,
  abstract     = {{<p>We first present spatially resolved ALMA and VLA continuum observations of the early-M red supergiant Antares to search for the presence of a chromosphere at radio wavelengths. We resolve the free-free emission of the Antares atmosphere at 11 unique wavelengths between 0.7 mm (ALMA band 8) and 10 cm (VLA S band). The projected angular diameter is found to continually increase with increasing wavelength, from a low of 50.7 mas at 0.7 mm up to a diameter of 431 mas at 10 cm, which corresponds to 1.35 and 11.6 times the photospheric angular diameter, respectively. All four ALMA measurements show that the shape of the atmosphere is elongated, with a flattening of 15% at a similar position angle. The disk-averaged gas temperature of the atmosphere initially rises from a value of 2700 K at 1.35 R∗ (i.e., 0.35 R∗ above the photosphere) to a peak value of 3800 K at ∼2.5 R∗, after which it then more gradually decreases to 1650 K at 11.6 R∗. The rise in gas temperature between 1.35 R∗ and ∼2.5 R∗ is evidence for a chromospheric temperature rise above the photosphere of a red supergiant. We detect a clear change in the spectral index across the sampled wavelength range, with the flux density Sν ν1.42 between 0.7 mm and 1.4 cm, which we associate with chromosphere-dominated emission, while the flux density Sν ν0.8 between 4.3 cm and 10 cm, which we associate with wind-dominated emission. We show that the Antares MOLsphere is transparent at our observed wavelengths, and the lukewarm chromosphere that we detect is therefore real and not just an average of the cool MOLsphere and hot ultraviolet emitting gas. We then perform nonlocal thermal equilibrium modeling of the far-ultraviolet radiation field of another early-M red supergiant, Betelgeuse, and find that an additional hot (i.e., &gt; 7000 K) chromospheric photoionization component with a much smaller filling factor must also exist throughout the chromospheres of these stars.</p>}},
  author       = {{O'Gorman, E. and Harper, G. M. and Ohnaka, K. and Feeney-Johansson, A. and Wilkeneit-Braun, K. and Brown, A. and Guinan, E. F. and Lim, J. and Richards, A. M.S. and Ryde, N. and Vlemmings, W. H.T.}},
  issn         = {{0004-6361}},
  keywords     = {{Radio continuum: stars; Stars: atmospheres; Stars: chromospheres; Stars: imaging; Stars: massive; Submillimeter: stars}},
  language     = {{eng}},
  publisher    = {{EDP Sciences}},
  series       = {{Astronomy and Astrophysics}},
  title        = {{ALMA and VLA reveal the lukewarm chromospheres of the nearby red supergiants Antares and Betelgeuse}},
  url          = {{http://dx.doi.org/10.1051/0004-6361/202037756}},
  doi          = {{10.1051/0004-6361/202037756}},
  volume       = {{638}},
  year         = {{2020}},
}