Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Jet fragmentation transverse momentum measurements from di-hadron correlations in √s=7 TeV pp and √sNN=5.02 TeV p–Pb collisions

Acharya, S ; Adolfsson, Jonatan LU ; Christiansen, Peter LU ; Ljunggren, Martin LU ; Nassirpour, Adrian LU orcid ; Oskarsson, Anders LU ; Richert, Tuva LU ; Silvermyr, David LU orcid ; Stenlund, Evert LU and Zurlo, N (2019) In Journal of High Energy Physics 2019(3).
Abstract
The transverse structure of jets was studied via jet fragmentation transverse momentum (j T ) distributions, obtained using two-particle correlations in proton-proton and proton-lead collisions, measured with the ALICE experiment at the LHC. The highest transverse momentum particle in each event is used as the trigger particle and the region 3 < p Tt < 15GeV/c is explored in this study. The measured distributions show a clear narrow Gaussian component and a wide non-Gaussian one. Based on Pythia simulations, the narrow component can be related to non-perturbative hadronization and the wide component to quantum chromodynamical splitting. The width of the narrow component shows a weak dependence on the transverse momentum of the... (More)
The transverse structure of jets was studied via jet fragmentation transverse momentum (j T ) distributions, obtained using two-particle correlations in proton-proton and proton-lead collisions, measured with the ALICE experiment at the LHC. The highest transverse momentum particle in each event is used as the trigger particle and the region 3 < p Tt < 15GeV/c is explored in this study. The measured distributions show a clear narrow Gaussian component and a wide non-Gaussian one. Based on Pythia simulations, the narrow component can be related to non-perturbative hadronization and the wide component to quantum chromodynamical splitting. The width of the narrow component shows a weak dependence on the transverse momentum of the trigger particle, in agreement with the expectation of universality of the hadronization process. On the other hand, the width of the wide component shows a rising trend suggesting increased branching for higher transverse momentum. The results obtained in pp collisions at s=7 TeV and in p–Pb collisions at sNN=5.02 TeV are compatible within uncertainties and hence no significant cold nuclear matter effects are observed. The results are compared to previous measurements from CCOR and PHENIX as well as to Pythia 8 and Herwig 7 simulations.[Figure not available: see fulltext.]. © 2019, The Author(s). (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Hadron-Hadron scattering (experiments)
in
Journal of High Energy Physics
volume
2019
issue
3
article number
169
publisher
Springer
external identifiers
  • scopus:85063688537
ISSN
1029-8479
DOI
10.1007/JHEP03(2019)169
language
English
LU publication?
yes
additional info
Export Date: 10 April 2019
id
b88e4b78-f03a-4b2e-8b56-e62d417a65b8
date added to LUP
2019-04-10 12:27:33
date last changed
2023-04-09 08:26:37
@article{b88e4b78-f03a-4b2e-8b56-e62d417a65b8,
  abstract     = {{The transverse structure of jets was studied via jet fragmentation transverse momentum (j T ) distributions, obtained using two-particle correlations in proton-proton and proton-lead collisions, measured with the ALICE experiment at the LHC. The highest transverse momentum particle in each event is used as the trigger particle and the region 3 &lt; p Tt &lt; 15GeV/c is explored in this study. The measured distributions show a clear narrow Gaussian component and a wide non-Gaussian one. Based on Pythia simulations, the narrow component can be related to non-perturbative hadronization and the wide component to quantum chromodynamical splitting. The width of the narrow component shows a weak dependence on the transverse momentum of the trigger particle, in agreement with the expectation of universality of the hadronization process. On the other hand, the width of the wide component shows a rising trend suggesting increased branching for higher transverse momentum. The results obtained in pp collisions at s=7 TeV and in p–Pb collisions at sNN=5.02 TeV are compatible within uncertainties and hence no significant cold nuclear matter effects are observed. The results are compared to previous measurements from CCOR and PHENIX as well as to Pythia 8 and Herwig 7 simulations.[Figure not available: see fulltext.]. © 2019, The Author(s).}},
  author       = {{Acharya, S and Adolfsson, Jonatan and Christiansen, Peter and Ljunggren, Martin and Nassirpour, Adrian and Oskarsson, Anders and Richert, Tuva and Silvermyr, David and Stenlund, Evert and Zurlo, N}},
  issn         = {{1029-8479}},
  keywords     = {{Hadron-Hadron scattering (experiments)}},
  language     = {{eng}},
  number       = {{3}},
  publisher    = {{Springer}},
  series       = {{Journal of High Energy Physics}},
  title        = {{Jet fragmentation transverse momentum measurements from di-hadron correlations in √s=7 TeV pp and √sNN=5.02 TeV p–Pb collisions}},
  url          = {{http://dx.doi.org/10.1007/JHEP03(2019)169}},
  doi          = {{10.1007/JHEP03(2019)169}},
  volume       = {{2019}},
  year         = {{2019}},
}