Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Unraveling Reversible Quenching Processes of O2, N2, Ar, and H2O in Metal Halide Perovskites at Moderate Photon Flux Densities

Nandayapa, Edgar R. ; Hirselandt, Katrin ; Boeffel, Christine ; Unger, Eva L. LU and List-Kratochvil, Emil J. W. (2020) In Advanced Optical Materials
Abstract

Metal halide perovskites (MHP), as used in photovoltaic (PV) applications, show a rich photophysics in inert and ambient atmosphere. The presence of atmospheric molecules leads to processes that enhance as well as reduce their photoluminescence (PL) emission. Various phenomena are previously described for a wide variety of gas molecules and different classes of MHP, with a particular interest on the long-term stability for PV applications. However, reversible PL quenching (PLQ) processes, which may be regarded equally important for the performance of PV and other optoelectronic applications, are neglected in other studies. This holds true for O2 and H2O, but especially for low-reactive gases such as nitrogen and... (More)

Metal halide perovskites (MHP), as used in photovoltaic (PV) applications, show a rich photophysics in inert and ambient atmosphere. The presence of atmospheric molecules leads to processes that enhance as well as reduce their photoluminescence (PL) emission. Various phenomena are previously described for a wide variety of gas molecules and different classes of MHP, with a particular interest on the long-term stability for PV applications. However, reversible PL quenching (PLQ) processes, which may be regarded equally important for the performance of PV and other optoelectronic applications, are neglected in other studies. This holds true for O2 and H2O, but especially for low-reactive gases such as nitrogen and argon. Using low excitation densities, it is shown that noticeable—and reversible—PLQ, in addition to PL enhancements, can already be observed for O2, N2, and Ar as well as for H2O at low concentrations of 1 mbar. The nature and origin of the quenching processes are further elucidated by applying the Stern–Volmer analysis, also employed to determine whether static and dynamic PLQ processes happen for the different quenching gases. The strongest static PLQ is found for O2 and H2O. MHPs in N2 and Ar atmospheres display a moderate PLQ effect.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
keywords
metal halide perovskites, static and dynamic photoluminescence quenching, Stern–Volmer relation
in
Advanced Optical Materials
article number
2001317
pages
10 pages
publisher
John Wiley & Sons Inc.
external identifiers
  • scopus:85090992253
ISSN
2195-1071
DOI
10.1002/adom.202001317
language
English
LU publication?
no
id
b8fb3c3c-1b37-4568-b9e5-a39a2a3babff
date added to LUP
2021-01-22 16:35:10
date last changed
2022-04-26 23:50:51
@article{b8fb3c3c-1b37-4568-b9e5-a39a2a3babff,
  abstract     = {{<p>Metal halide perovskites (MHP), as used in photovoltaic (PV) applications, show a rich photophysics in inert and ambient atmosphere. The presence of atmospheric molecules leads to processes that enhance as well as reduce their photoluminescence (PL) emission. Various phenomena are previously described for a wide variety of gas molecules and different classes of MHP, with a particular interest on the long-term stability for PV applications. However, reversible PL quenching (PLQ) processes, which may be regarded equally important for the performance of PV and other optoelectronic applications, are neglected in other studies. This holds true for O<sub>2</sub> and H<sub>2</sub>O, but especially for low-reactive gases such as nitrogen and argon. Using low excitation densities, it is shown that noticeable—and reversible—PLQ, in addition to PL enhancements, can already be observed for O<sub>2</sub>, N<sub>2</sub>, and Ar as well as for H<sub>2</sub>O at low concentrations of 1 mbar. The nature and origin of the quenching processes are further elucidated by applying the Stern–Volmer analysis, also employed to determine whether static and dynamic PLQ processes happen for the different quenching gases. The strongest static PLQ is found for O<sub>2</sub> and H<sub>2</sub>O. MHPs in N<sub>2</sub> and Ar atmospheres display a moderate PLQ effect.</p>}},
  author       = {{Nandayapa, Edgar R. and Hirselandt, Katrin and Boeffel, Christine and Unger, Eva L. and List-Kratochvil, Emil J. W.}},
  issn         = {{2195-1071}},
  keywords     = {{metal halide perovskites; static and dynamic photoluminescence quenching; Stern–Volmer relation}},
  language     = {{eng}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Advanced Optical Materials}},
  title        = {{Unraveling Reversible Quenching Processes of O<sub>2</sub>, N<sub>2</sub>, Ar, and H<sub>2</sub>O in Metal Halide Perovskites at Moderate Photon Flux Densities}},
  url          = {{http://dx.doi.org/10.1002/adom.202001317}},
  doi          = {{10.1002/adom.202001317}},
  year         = {{2020}},
}