Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Body mass index as a predictor of fracture risk: A meta-analysis

De Laet, C ; Kanis, JA ; Oden, A ; Johanson, H ; Johnell, Olof LU ; Delmas, P ; Eisman, JA ; Kroger, H ; Fujiwara, S and Garnero, P , et al. (2005) In Osteoporosis International 16(11). p.1330-1338
Abstract
Low body mass index (BMI) is a well-documented risk factor for future fracture. The aim of this study was to quantify this effect and to explore the association of BMI with fracture risk in relation to age, gender and bone mineral density (BMD) from an international perspective using worldwide data. We studied individual participant data from almost 60,000 men and women from 12 prospective population-based cohorts comprising Rotterdam, EVOS/EPOS, CaMos, Rochester, Sheffield, Dubbo, EPIDOS, OFELY, Kuopio, Hiroshima, and two cohorts from Gothenburg, with a total follow-up of over 250,000 person years. The effects of BMI, BMD, age and gender on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a... (More)
Low body mass index (BMI) is a well-documented risk factor for future fracture. The aim of this study was to quantify this effect and to explore the association of BMI with fracture risk in relation to age, gender and bone mineral density (BMD) from an international perspective using worldwide data. We studied individual participant data from almost 60,000 men and women from 12 prospective population-based cohorts comprising Rotterdam, EVOS/EPOS, CaMos, Rochester, Sheffield, Dubbo, EPIDOS, OFELY, Kuopio, Hiroshima, and two cohorts from Gothenburg, with a total follow-up of over 250,000 person years. The effects of BMI, BMD, age and gender on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson regression model in each cohort separately. The results of the different studies were then merged. Without information on BMD, the age-adjusted risk for any type of fracture increased significantly with lower BMI. Overall, the risk ratio (RR) per unit higher BMI was 0.98 (95% confidence interval [CI], 0.97-0.99) for any fracture, 0.97 (95% CI, 0.96-0.98) for osteoporotic fracture and 0.93 (95% CI, 0.91-0.94) for hip fracture (all p < 0.001). The RR per unit change in BMI was very similar in men and women ( p > 0.30). After adjusting for BMD, these RR became 1 for any fracture or osteoporotic fracture and 0.98 for hip fracture (significant in women). The gradient of fracture risk without adjustment for BMD was not linearly distributed across values for BMI. Instead, the contribution to fracture risk was much more marked at low values of BMI than at values above the median. This nonlinear relation of risk with BMI was most evident for hip fracture risk. When compared with a BMI of 25 kg/m(2), a BMI of 20 kg/m(2) was associated with a nearly twofold increase in risk ratio (RR=1.95; 95% CI, 1.71-2.22) for hip fracture. In contrast, a BMI of 30 kg/m(2), when compared with a BMI of 25 kg/m(2), was associated with only a 17% reduction in hip fracture risk (RR=0.83; 95% CI, 0.69-0.99). We conclude that low BMI confers a risk of substantial importance for all fractures that is largely independent of age and sex, but dependent on BMD. The significance of BMI as a risk factor varies according to the level of BMI. Its validation on an international basis permits the use of this risk factor in case-finding strategies. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
risk, prospective studies, osteoporosis, meta-analysis, BMI, fractures
in
Osteoporosis International
volume
16
issue
11
pages
1330 - 1338
publisher
Springer
external identifiers
  • pmid:15928804
  • wos:000232907600004
  • scopus:27444442003
ISSN
1433-2965
DOI
10.1007/s00198-005-1863-y
language
English
LU publication?
yes
id
b94f7fc6-4b10-4f4c-9479-d8e613faccee (old id 898772)
date added to LUP
2016-04-01 15:47:07
date last changed
2024-05-24 15:49:02
@article{b94f7fc6-4b10-4f4c-9479-d8e613faccee,
  abstract     = {{Low body mass index (BMI) is a well-documented risk factor for future fracture. The aim of this study was to quantify this effect and to explore the association of BMI with fracture risk in relation to age, gender and bone mineral density (BMD) from an international perspective using worldwide data. We studied individual participant data from almost 60,000 men and women from 12 prospective population-based cohorts comprising Rotterdam, EVOS/EPOS, CaMos, Rochester, Sheffield, Dubbo, EPIDOS, OFELY, Kuopio, Hiroshima, and two cohorts from Gothenburg, with a total follow-up of over 250,000 person years. The effects of BMI, BMD, age and gender on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson regression model in each cohort separately. The results of the different studies were then merged. Without information on BMD, the age-adjusted risk for any type of fracture increased significantly with lower BMI. Overall, the risk ratio (RR) per unit higher BMI was 0.98 (95% confidence interval [CI], 0.97-0.99) for any fracture, 0.97 (95% CI, 0.96-0.98) for osteoporotic fracture and 0.93 (95% CI, 0.91-0.94) for hip fracture (all p &lt; 0.001). The RR per unit change in BMI was very similar in men and women ( p &gt; 0.30). After adjusting for BMD, these RR became 1 for any fracture or osteoporotic fracture and 0.98 for hip fracture (significant in women). The gradient of fracture risk without adjustment for BMD was not linearly distributed across values for BMI. Instead, the contribution to fracture risk was much more marked at low values of BMI than at values above the median. This nonlinear relation of risk with BMI was most evident for hip fracture risk. When compared with a BMI of 25 kg/m(2), a BMI of 20 kg/m(2) was associated with a nearly twofold increase in risk ratio (RR=1.95; 95% CI, 1.71-2.22) for hip fracture. In contrast, a BMI of 30 kg/m(2), when compared with a BMI of 25 kg/m(2), was associated with only a 17% reduction in hip fracture risk (RR=0.83; 95% CI, 0.69-0.99). We conclude that low BMI confers a risk of substantial importance for all fractures that is largely independent of age and sex, but dependent on BMD. The significance of BMI as a risk factor varies according to the level of BMI. Its validation on an international basis permits the use of this risk factor in case-finding strategies.}},
  author       = {{De Laet, C and Kanis, JA and Oden, A and Johanson, H and Johnell, Olof and Delmas, P and Eisman, JA and Kroger, H and Fujiwara, S and Garnero, P and McCloskey, EV and Mellstrom, D and Melton, LJ and Meunier, PJ and Pols, HAP and Reeve, J and Silman, A and Tenenhouse, A}},
  issn         = {{1433-2965}},
  keywords     = {{risk; prospective studies; osteoporosis; meta-analysis; BMI; fractures}},
  language     = {{eng}},
  number       = {{11}},
  pages        = {{1330--1338}},
  publisher    = {{Springer}},
  series       = {{Osteoporosis International}},
  title        = {{Body mass index as a predictor of fracture risk: A meta-analysis}},
  url          = {{http://dx.doi.org/10.1007/s00198-005-1863-y}},
  doi          = {{10.1007/s00198-005-1863-y}},
  volume       = {{16}},
  year         = {{2005}},
}