Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Hydration, pore structure, and related moisture properties of fly ash blended cement-based materials : Experimental methods and laboratory measurements

Linderoth, Oskar LU orcid (2020)
Abstract
Cement-based materials, such as mortar and concrete, are the most employed construction materials in the world. Cement is an important component; it reacts with water to form a glue, called cement paste, which causes the material to harden. Today, cement production accounts for a significant portion of the world’s annual carbon dioxide emissions. Replacing parts of cement with other materials that have cement-like properties, such as fly ash, can help reduce the climatic impact.
Fly ash is a residual product from coal-fired power plants that has previously landed on landfills. Replacing part of ordinary cement with fly ash changes the chemical composition and reactivity of the material. Knowledge of how these changes affect material... (More)
Cement-based materials, such as mortar and concrete, are the most employed construction materials in the world. Cement is an important component; it reacts with water to form a glue, called cement paste, which causes the material to harden. Today, cement production accounts for a significant portion of the world’s annual carbon dioxide emissions. Replacing parts of cement with other materials that have cement-like properties, such as fly ash, can help reduce the climatic impact.
Fly ash is a residual product from coal-fired power plants that has previously landed on landfills. Replacing part of ordinary cement with fly ash changes the chemical composition and reactivity of the material. Knowledge of how these changes affect material properties is necessary to fabricate long-term durable structures with fly ash blended cement-based materials. This applies not least to the pore structure and related moisture properties because most processes that degrade cement-based materials are both penetrating and moisture dependent. The aim of this study was to contribute new data and knowledge in this area.
Unlike ordinary cement, fly ash has little ability to react directly with water. For fly ash to react with water, it depends on the reaction of cement with water. This causes cement-based materials with fly ash to cure more slowly during in the first days. However, this study shows that materials with fly ash have a lower degree of reaction and are more porous well-beyond the first days of curing. The latter part can be partly explained by the fact that the fly ash reaction binds less water than the cement reaction. Instead, fly ash uses part of the products formed by cement for its reaction.
Although the volume of pores increases with increasing fly ash replacement, this study shows that the material’s ability to transport water in the vapour and liquid phase decreases. The porous structure in fly ash blended cement-based materials seems to be more heterogeneous and less connective than that in materials with only ordinary cement. This is of considerable practical importance because the ability to transport moisture controls the drying of the material; for example, the time required before moisture-sensitive flooring materials can be applied to a concrete surface.
Furthermore, the present study show that fly ash makes the curing and material properties more temperature sensitive. The reaction of fly ash is considerably delayed at low temperature. The effects are similar to those previously documented for ordinary cement during the first days but differ over longer time. For ordinary cement, low temperature leads to the formation of a more homogenous porous structure that allows the reactions to proceed for a longer amount of time. After a long time, materials with ordinary cement cured at low temperature seem to have the most well-developed properties. These long-term effects of low temperature are not observed as clearly for fly ash blended materials. The results highlight that it is especially important to protect structures with fly ash blended cement-based materials from low temperatures.
Finally, the laboratory work in this study involved some method development. A new measurement and evaluation routine was employed, to show that heat development can be measured from the reactions between cement (with and without fly ash) and water for up to a year after mixing. Previous studies have argued that this is not possible after the first few weeks of reaction. The results create new opportunities for researchers and the industry to study long-term reactions in cement-based materials. In this study, we also presented a new method for determining the amount of binder (e.g., cement and fly ash) in small samples of cement-based material. The method makes it possible to compare the measurement results for small samples of mortar or concrete obtained from a larger volume of material (i.e., with unknown compositions). (Less)
Abstract (Swedish)
Cementbaserade material, såsom murbruk och betong, är världens mest använda byggnadsmaterial. Cement är en viktig delkomponent; det reagerar med vatten och bildar ett lim, kallad cementpasta, som får materialet att hårdna. Idag står cementproduktion för en betydande del av världens årliga koldioxidutsläpp. Genom att byta ut delar av cementet mot andra material med cement-lika egenskaper, till exempel flygaska, kan klimatpåverkan minskas.
Flygaska är en restprodukt från kolkraftverk som tidigare hamnat på deponi. När man ersätter delar av det vanliga cementet med flygaska förändras cementets kemiska sammansättning och reaktivitet. För att skapa långsiktigt hållbara konstruktioner med cementbaserade material krävs kunskap om hur dessa... (More)
Cementbaserade material, såsom murbruk och betong, är världens mest använda byggnadsmaterial. Cement är en viktig delkomponent; det reagerar med vatten och bildar ett lim, kallad cementpasta, som får materialet att hårdna. Idag står cementproduktion för en betydande del av världens årliga koldioxidutsläpp. Genom att byta ut delar av cementet mot andra material med cement-lika egenskaper, till exempel flygaska, kan klimatpåverkan minskas.
Flygaska är en restprodukt från kolkraftverk som tidigare hamnat på deponi. När man ersätter delar av det vanliga cementet med flygaska förändras cementets kemiska sammansättning och reaktivitet. För att skapa långsiktigt hållbara konstruktioner med cementbaserade material krävs kunskap om hur dessa förändringar påverkar materialegenskaperna. Detta gäller inte minst porstrukturen och de relaterade fuktegenskaperna eftersom de flesta processer som bryter ner cement-baserade material är både inträngande och fuktberoende. Målet med denna studie var att bidra med ny data och kunskap inom detta område.
Till skillnad från vanligt cement har flygaskan liten förmåga att reagera direkt med vatten. Istället är flygaskan beroende av cementets reaktion med vatten för att själv reagera. Detta gör att cementbaserade material med flygaska härdar långsammare under de första dagarna. Emellertid visar denna studie att material med flygaska har en lägre reaktionsgrad och är mer porösa långt bortom de första dagarnas härdning. Det senare förklaras delvis av att flygaskareaktionen binder mindre vatten än cementreaktionen. Istället återanvänder flygaskan delar av de produkter cementet bildat för sin reaktion.
Även om volymen porer ökar med ökad inblandning av flygaska, visar denna studie att materialets förmåga at transportera vatten i ång- och vätskefas minskar. Den porösa strukturen i material med flygaskablandade cement tycks vara mer heterogen och mindre sammankopplad än i material med vanligt cement. Detta är av stor praktisk betydelse eftersom förmågan att transportera fukt styr uttorkningen av materialet; till exempel, den tid som krävs innan fuktkänsliga golvmaterial kan appliceras på en betongyta.
Vidare visar studiens mätningar att flygaska gör härdningen och materialegenskaperna mer temperaturkänsliga. Flygaskans reaktion fördröjs avsevärt vid låg temperatur. Effekterna liknar de som tidigare dokumenterats för vanligt cement under de första dagarna men skiljer sig åt över längre tid. För vanligt cement leder låg temperatur till bildandet av en mer homogen porös struktur som tillåter att reaktionerna förgår under en längre tid. Efter lång tid verkar material med vanligt cement härdat vid låg temperatur ha de mest välutvecklad egenskaperna. Dessa långtidseffekter av låg temperatur ses inte för material med flygaska. Resultaten belyser att det är särskilt viktigt att skydda konstruktioner med flygaskablandade cement mot låga temperaturer.
Slutligen, det laborativa arbetet i denna studie involverade viss metodutveckling. En ny mät- och utvärderingsrutin användes för att visa att värmeutveckling kan mätas från reaktionerna mellan cement (med och utan flygaska) och vatten i upp till ett år efter blandning. Tidigare studier har hävdat att detta inte är möjligt efter de första veckorna. Resultaten skapar nya möjligheter för forskare och industrin att studera långsiktiga reaktioner i cementbaserade material. Studien har också resulterat i en ny metod för att bestämma mängden bindemedel (till exempel, cement och flygaska) i små prover av cementbaserat material. Metoden gör det möjligt att jämföra mätresultat för små prover av murbruk eller betong erhållna från en större volym material (det vill säga, prov med okända sammansättningar).
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. De Weerdt, Klaartje, Norwegian University of Science and Technology, Norway.
organization
alternative title
Hydratation, porstruktur och relaterade fuktegenskaper hos cementbaserade material med flygaska : Experimentella metoder och laborativa mätningar
publishing date
type
Thesis
publication status
published
subject
keywords
Cement, Murbruk, Betong, Hydratation, Porstruktur, Sorption, Fukttransport, Mineraliska tillsatsmaterial, Flygaska, Cement, Mortar, Concrete, Hydration, Pore structure, Water vapour sorption, Moisture transport, Supplementary cementitious materials, Fly ash
pages
80 pages
publisher
Department of Building and Environmental Technology, Lund University
defense location
Lecture hall V:B, building V, John Ericssons väg 1, Faculty of Engineering LTH, Lund University, Lund. Join via Zoom: https://lu-se.zoom.us/j/67956125304
defense date
2020-09-25 9:15:00
ISSN
0348-7911
ISBN
978-91-7895-587-9
978-91-7895-586-2
project
Hydration, pore structure, and related moisture properties of fly ash blended cement-based materials
language
English
LU publication?
yes
id
bab2fe3d-7f3a-436a-ba54-bcac3a5e52ba
date added to LUP
2020-08-31 11:38:27
date last changed
2021-01-30 02:20:43
@phdthesis{bab2fe3d-7f3a-436a-ba54-bcac3a5e52ba,
  abstract     = {{Cement-based materials, such as mortar and concrete, are the most employed construction materials in the world. Cement is an important component; it reacts with water to form a glue, called cement paste, which causes the material to harden. Today, cement production accounts for a significant portion of the world’s annual carbon dioxide emissions. Replacing parts of cement with other materials that have cement-like properties, such as fly ash, can help reduce the climatic impact.<br/>Fly ash is a residual product from coal-fired power plants that has previously landed on landfills. Replacing part of ordinary cement with fly ash changes the chemical composition and reactivity of the material. Knowledge of how these changes affect material properties is necessary to fabricate long-term durable structures with fly ash blended cement-based materials. This applies not least to the pore structure and related moisture properties because most processes that degrade cement-based materials are both penetrating and moisture dependent. The aim of this study was to contribute new data and knowledge in this area.<br/>Unlike ordinary cement, fly ash has little ability to react directly with water. For fly ash to react with water, it depends on the reaction of cement with water. This causes cement-based materials with fly ash to cure more slowly during in the first days. However, this study shows that materials with fly ash have a lower degree of reaction and are more porous well-beyond the first days of curing. The latter part can be partly explained by the fact that the fly ash reaction binds less water than the cement reaction. Instead, fly ash uses part of the products formed by cement for its reaction.<br/>Although the volume of pores increases with increasing fly ash replacement, this study shows that the material’s ability to transport water in the vapour and liquid phase decreases. The porous structure in fly ash blended cement-based materials seems to be more heterogeneous and less connective than that in materials with only ordinary cement. This is of considerable practical importance because the ability to transport moisture controls the drying of the material; for example, the time required before moisture-sensitive flooring materials can be applied to a concrete surface.<br/>Furthermore, the present study show that fly ash makes the curing and material properties more temperature sensitive. The reaction of fly ash is considerably delayed at low temperature. The effects are similar to those previously documented for ordinary cement during the first days but differ over longer time. For ordinary cement, low temperature leads to the formation of a more homogenous porous structure that allows the reactions to proceed for a longer amount of time. After a long time, materials with ordinary cement cured at low temperature seem to have the most well-developed properties. These long-term effects of low temperature are not observed as clearly for fly ash blended materials. The results highlight that it is especially important to protect structures with fly ash blended cement-based materials from low temperatures.<br/>Finally, the laboratory work in this study involved some method development. A new measurement and evaluation routine was employed, to show that heat development can be measured from the reactions between cement (with and without fly ash) and water for up to a year after mixing. Previous studies have argued that this is not possible after the first few weeks of reaction. The results create new opportunities for researchers and the industry to study long-term reactions in cement-based materials. In this study, we also presented a new method for determining the amount of binder (e.g., cement and fly ash) in small samples of cement-based material. The method makes it possible to compare the measurement results for small samples of mortar or concrete obtained from a larger volume of material (i.e., with unknown compositions).}},
  author       = {{Linderoth, Oskar}},
  isbn         = {{978-91-7895-587-9}},
  issn         = {{0348-7911}},
  keywords     = {{Cement; Murbruk; Betong; Hydratation; Porstruktur; Sorption; Fukttransport; Mineraliska tillsatsmaterial; Flygaska; Cement; Mortar; Concrete; Hydration; Pore structure; Water vapour sorption; Moisture transport; Supplementary cementitious materials; Fly ash}},
  language     = {{eng}},
  month        = {{09}},
  publisher    = {{Department of Building and Environmental Technology, Lund University}},
  school       = {{Lund University}},
  title        = {{Hydration, pore structure, and related moisture properties of fly ash blended cement-based materials : Experimental methods and laboratory measurements}},
  url          = {{https://lup.lub.lu.se/search/files/83268673/e_spik_Oskar_Linderoth.pdf}},
  year         = {{2020}},
}