Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Ab initio electron-lattice downfolding : Potential energy landscapes, anharmonicity, and molecular dynamics in charge density wave materials

Schobert, Arne ; Berges, Jan ; van Loon, Erik G.C.P. LU ; Sentef, Michael A. ; Brener, Sergey ; Rossi, Mariana and Wehling, Tim O. (2024) In SciPost Physics 16(2).
Abstract

The interplay of electronic and nuclear degrees of freedom presents an outstanding problem in condensed matter physics and chemistry. Computational challenges arise especially for large systems, long time scales, in nonequilibrium, or in systems with strong correlations. In this work, we show how downfolding approaches facilitate complexity reduction on the electronic side and thereby boost the simulation of electronic properties and nuclear motion—in particular molecular dynamics (MD) simulations. Three different downfolding strategies based on constraining, unscreening, and combinations thereof are benchmarked against full density functional calculations for selected charge density wave (CDW) systems, namely 1H-TaS2,... (More)

The interplay of electronic and nuclear degrees of freedom presents an outstanding problem in condensed matter physics and chemistry. Computational challenges arise especially for large systems, long time scales, in nonequilibrium, or in systems with strong correlations. In this work, we show how downfolding approaches facilitate complexity reduction on the electronic side and thereby boost the simulation of electronic properties and nuclear motion—in particular molecular dynamics (MD) simulations. Three different downfolding strategies based on constraining, unscreening, and combinations thereof are benchmarked against full density functional calculations for selected charge density wave (CDW) systems, namely 1H-TaS2, 1T-TiSe2, 1H-NbS2, and a one-dimensional carbon chain. We find that the downfolded models can reproduce potential energy surfaces on supercells accurately and facilitate computational speedup in MD simulations by about five orders of magnitude in comparison to purely ab initio calculations. For monolayer 1H-TaS2 we report classical and path integral replica exchange MD simulations, revealing the impact of thermal and quantum fluctuations on the CDW transition.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
SciPost Physics
volume
16
issue
2
article number
046
publisher
SciPost
external identifiers
  • scopus:85185493461
ISSN
2542-4653
DOI
10.21468/SciPostPhys.16.2.046
language
English
LU publication?
yes
id
c1d90683-4a64-4c54-a95a-e196a962bb46
date added to LUP
2024-03-27 10:41:26
date last changed
2024-03-27 10:42:03
@article{c1d90683-4a64-4c54-a95a-e196a962bb46,
  abstract     = {{<p>The interplay of electronic and nuclear degrees of freedom presents an outstanding problem in condensed matter physics and chemistry. Computational challenges arise especially for large systems, long time scales, in nonequilibrium, or in systems with strong correlations. In this work, we show how downfolding approaches facilitate complexity reduction on the electronic side and thereby boost the simulation of electronic properties and nuclear motion—in particular molecular dynamics (MD) simulations. Three different downfolding strategies based on constraining, unscreening, and combinations thereof are benchmarked against full density functional calculations for selected charge density wave (CDW) systems, namely 1H-TaS<sub>2</sub>, 1T-TiSe<sub>2</sub>, 1H-NbS<sub>2</sub>, and a one-dimensional carbon chain. We find that the downfolded models can reproduce potential energy surfaces on supercells accurately and facilitate computational speedup in MD simulations by about five orders of magnitude in comparison to purely ab initio calculations. For monolayer 1H-TaS<sub>2</sub> we report classical and path integral replica exchange MD simulations, revealing the impact of thermal and quantum fluctuations on the CDW transition.</p>}},
  author       = {{Schobert, Arne and Berges, Jan and van Loon, Erik G.C.P. and Sentef, Michael A. and Brener, Sergey and Rossi, Mariana and Wehling, Tim O.}},
  issn         = {{2542-4653}},
  language     = {{eng}},
  number       = {{2}},
  publisher    = {{SciPost}},
  series       = {{SciPost Physics}},
  title        = {{Ab initio electron-lattice downfolding : Potential energy landscapes, anharmonicity, and molecular dynamics in charge density wave materials}},
  url          = {{http://dx.doi.org/10.21468/SciPostPhys.16.2.046}},
  doi          = {{10.21468/SciPostPhys.16.2.046}},
  volume       = {{16}},
  year         = {{2024}},
}