Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Probing charge- and heat-current noise by frequency-dependent fluctuations in temperature and potential

Dashti, Nastaran LU ; Misiorny, Maciej ; Samuelsson, Peter LU and Splettstoesser, Janine (2018) In Physical Review Applied 10(2).
Abstract

The energetic properties of electron transport in mesoscopic and nanoscale conductors are of considerable interest at present. Here, we theoretically investigate the possibility of probing charge- and heat-current fluctuations as well as their mixed correlations via the temperature and electrochemical potential fluctuations of a probe coupled to the conductor. Our particular interest is devoted to the charge and energy noise stemming from time-dependently-driven nanoelectronic systems designed for the controlled emission of single electrons, even though our setup is appropriate for more general ac-driving schemes. We employ a Boltzmann-Langevin approach in order to relate the bare charge- and energy-current fluctuations emitted from the... (More)

The energetic properties of electron transport in mesoscopic and nanoscale conductors are of considerable interest at present. Here, we theoretically investigate the possibility of probing charge- and heat-current fluctuations as well as their mixed correlations via the temperature and electrochemical potential fluctuations of a probe coupled to the conductor. Our particular interest is devoted to the charge and energy noise stemming from time-dependently-driven nanoelectronic systems designed for the controlled emission of single electrons, even though our setup is appropriate for more general ac-driving schemes. We employ a Boltzmann-Langevin approach in order to relate the bare charge- and energy-current fluctuations emitted from the electron source to frequency-dependent electrochemical potential and temperature fluctuations, which the former induce in the probe. We apply our findings to the prominent example of an on-demand single-electron source, realized by a driven mesoscopic capacitor in the quantum Hall regime. We show that neither the background fluctuations of the probe in the absence of the working source, nor the fluctuations induced by the probe hinder the access to the sought-after direct source noise for a large range of parameters.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review Applied
volume
10
issue
2
article number
024007
publisher
American Physical Society
external identifiers
  • scopus:85051465419
ISSN
2331-7019
DOI
10.1103/PhysRevApplied.10.024007
language
English
LU publication?
yes
id
c537258c-5425-440e-8741-5a3ea96c6fa8
date added to LUP
2018-09-10 13:29:45
date last changed
2021-10-06 02:51:12
@article{c537258c-5425-440e-8741-5a3ea96c6fa8,
  abstract     = {<p>The energetic properties of electron transport in mesoscopic and nanoscale conductors are of considerable interest at present. Here, we theoretically investigate the possibility of probing charge- and heat-current fluctuations as well as their mixed correlations via the temperature and electrochemical potential fluctuations of a probe coupled to the conductor. Our particular interest is devoted to the charge and energy noise stemming from time-dependently-driven nanoelectronic systems designed for the controlled emission of single electrons, even though our setup is appropriate for more general ac-driving schemes. We employ a Boltzmann-Langevin approach in order to relate the bare charge- and energy-current fluctuations emitted from the electron source to frequency-dependent electrochemical potential and temperature fluctuations, which the former induce in the probe. We apply our findings to the prominent example of an on-demand single-electron source, realized by a driven mesoscopic capacitor in the quantum Hall regime. We show that neither the background fluctuations of the probe in the absence of the working source, nor the fluctuations induced by the probe hinder the access to the sought-after direct source noise for a large range of parameters.</p>},
  author       = {Dashti, Nastaran and Misiorny, Maciej and Samuelsson, Peter and Splettstoesser, Janine},
  issn         = {2331-7019},
  language     = {eng},
  month        = {08},
  number       = {2},
  publisher    = {American Physical Society},
  series       = {Physical Review Applied},
  title        = {Probing charge- and heat-current noise by frequency-dependent fluctuations in temperature and potential},
  url          = {http://dx.doi.org/10.1103/PhysRevApplied.10.024007},
  doi          = {10.1103/PhysRevApplied.10.024007},
  volume       = {10},
  year         = {2018},
}