Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A biophotonic platform for quantitative analysis in the spatial, spectral, polarimetric, and goniometric domains

Månefjord, Hampus LU orcid ; Li, Meng LU orcid ; Brackmann, Christian LU ; Reistad, Nina LU orcid ; Runemark, Anna LU ; Rota, Jadranka LU orcid ; Anderson, Benjamin LU ; Zoueu, Jeremie T. ; Merdasa, Aboma LU and Brydegaard, Mikkel LU (2022) In Review of Scientific Instruments 93(11).
Abstract
Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instruments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular composition, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tissue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and... (More)
Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instruments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular composition, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tissue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and the ability to solve local problems with applied physics. We have designed, prototyped, and evaluated the low-cost Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and Compact Equipment (BIOSPACE) for high-quality quantitative analysis. BIOSPACE uses multiplexed light-emitting diodes with emission wavelengths from ultraviolet to near-infrared, captured by a synchronized camera. The angles of the light source, the target, and the polarization filters are automated by low-cost mechanics and a microcomputer. This enables multi-dimensional scatter analysis of centimeter-sized biological targets. We present the construction, calibration, and evaluation of BIOSPACE. The diverse functions of BIOSPACE include small animal spectral imaging, measuring the nanometer thickness of a bark-beetle wing, acquiring the scattering phase function of a blood smear and estimating the anisotropic scattering and the extinction coefficients, and contrasting muscle fibers using polarization. We provide blueprints, component list, and software for replication by enthusiasts and educators to simplify the hands-on investigation of fundamental optical properties in biological samples. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Review of Scientific Instruments
volume
93
issue
11
article number
113709
pages
14 pages
publisher
American Institute of Physics (AIP)
external identifiers
  • scopus:85143304765
  • pmid:36461456
ISSN
1089-7623
DOI
10.1063/5.0095133
language
English
LU publication?
yes
id
c5cda6af-14e5-4702-85c5-3ef1fb1d8e40
date added to LUP
2022-11-21 11:27:22
date last changed
2024-05-14 20:50:34
@article{c5cda6af-14e5-4702-85c5-3ef1fb1d8e40,
  abstract     = {{Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instruments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular composition, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tissue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and the ability to solve local problems with applied physics. We have designed, prototyped, and evaluated the low-cost Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and Compact Equipment (BIOSPACE) for high-quality quantitative analysis. BIOSPACE uses multiplexed light-emitting diodes with emission wavelengths from ultraviolet to near-infrared, captured by a synchronized camera. The angles of the light source, the target, and the polarization filters are automated by low-cost mechanics and a microcomputer. This enables multi-dimensional scatter analysis of centimeter-sized biological targets. We present the construction, calibration, and evaluation of BIOSPACE. The diverse functions of BIOSPACE include small animal spectral imaging, measuring the nanometer thickness of a bark-beetle wing, acquiring the scattering phase function of a blood smear and estimating the anisotropic scattering and the extinction coefficients, and contrasting muscle fibers using polarization. We provide blueprints, component list, and software for replication by enthusiasts and educators to simplify the hands-on investigation of fundamental optical properties in biological samples.}},
  author       = {{Månefjord, Hampus and Li, Meng and Brackmann, Christian and Reistad, Nina and Runemark, Anna and Rota, Jadranka and Anderson, Benjamin and Zoueu, Jeremie T. and Merdasa, Aboma and Brydegaard, Mikkel}},
  issn         = {{1089-7623}},
  language     = {{eng}},
  month        = {{11}},
  number       = {{11}},
  publisher    = {{American Institute of Physics (AIP)}},
  series       = {{Review of Scientific Instruments}},
  title        = {{A biophotonic platform for quantitative analysis in the spatial, spectral, polarimetric, and goniometric domains}},
  url          = {{http://dx.doi.org/10.1063/5.0095133}},
  doi          = {{10.1063/5.0095133}},
  volume       = {{93}},
  year         = {{2022}},
}