Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Field investigation of winter thermo‐ and hydrodynamics in a small Karelian lake

Bengtsson, Lars LU ; Malm, Joakim LU ; Terzhevik, Arkady ; Petrov, Michail ; Boyarinov, Pjotr ; Glinsky, Alexander and Palshin, Nikolai (1996) In Limnology and Oceanography 41(7). p.1502-1502
Abstract
During late winter (18 March–7 April 1994), temperature and current measurements were made in Lake Vendyurskoe, Russia, including three surveys at six cross sections of the lake. Also, the temperature profile evolution was registered with two thermistor chains at two stations (bottom depths of 7.6 and 11.5 m) until the time of ice breakup. Temperature gradients were measured just below the ice cover and in the upper 10‐cm layer of the bottom sediments.

The isotherms were found to be almost horizontal and evenly spaced vertically, so no conditions for large‐scale, density‐induced currents existed. The heat flux from sediments to water ranged from 0.6 to 2.0 W m−2. These values were inversely related to the depth. The heat flux from... (More)
During late winter (18 March–7 April 1994), temperature and current measurements were made in Lake Vendyurskoe, Russia, including three surveys at six cross sections of the lake. Also, the temperature profile evolution was registered with two thermistor chains at two stations (bottom depths of 7.6 and 11.5 m) until the time of ice breakup. Temperature gradients were measured just below the ice cover and in the upper 10‐cm layer of the bottom sediments.

The isotherms were found to be almost horizontal and evenly spaced vertically, so no conditions for large‐scale, density‐induced currents existed. The heat flux from sediments to water ranged from 0.6 to 2.0 W m−2. These values were inversely related to the depth. The heat flux from water to ice ranged from 0.7 to 1.2 W m−2. When water heating from solar radiation penetration became apparent, this flux increased by a factor of two. When solar radiation increased, convection occurred in the upper layers of the water column. When solar radiation heating became significant at the beginning of spring, the average net heat flux at the ice‐water interface during daytime was 7.7 W m−2. Weak currents (few mm s−1) with a seiche‐like character were observed, which most likely resulted from ice‐cover oscillations. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Limnology and Oceanography
volume
41
issue
7
pages
1513 pages
publisher
ASLO
external identifiers
  • scopus:0000765890
ISSN
1939-5590
DOI
10.4319/lo.1996.41.7.1502
language
English
LU publication?
yes
id
c99a2647-39fa-4f40-911c-bc052d3d74d5
date added to LUP
2019-10-26 01:28:28
date last changed
2022-02-01 01:33:57
@article{c99a2647-39fa-4f40-911c-bc052d3d74d5,
  abstract     = {{During late winter (18 March–7 April 1994), temperature and current measurements were made in Lake Vendyurskoe, Russia, including three surveys at six cross sections of the lake. Also, the temperature profile evolution was registered with two thermistor chains at two stations (bottom depths of 7.6 and 11.5 m) until the time of ice breakup. Temperature gradients were measured just below the ice cover and in the upper 10‐cm layer of the bottom sediments.<br/><br/>The isotherms were found to be almost horizontal and evenly spaced vertically, so no conditions for large‐scale, density‐induced currents existed. The heat flux from sediments to water ranged from 0.6 to 2.0 W m−2. These values were inversely related to the depth. The heat flux from water to ice ranged from 0.7 to 1.2 W m−2. When water heating from solar radiation penetration became apparent, this flux increased by a factor of two. When solar radiation increased, convection occurred in the upper layers of the water column. When solar radiation heating became significant at the beginning of spring, the average net heat flux at the ice‐water interface during daytime was 7.7 W m−2. Weak currents (few mm s−1) with a seiche‐like character were observed, which most likely resulted from ice‐cover oscillations.}},
  author       = {{Bengtsson, Lars and Malm, Joakim and Terzhevik, Arkady and Petrov, Michail and Boyarinov, Pjotr and Glinsky, Alexander and Palshin, Nikolai}},
  issn         = {{1939-5590}},
  language     = {{eng}},
  number       = {{7}},
  pages        = {{1502--1502}},
  publisher    = {{ASLO}},
  series       = {{Limnology and Oceanography}},
  title        = {{Field investigation of winter thermo‐ and hydrodynamics in a small Karelian lake}},
  url          = {{http://dx.doi.org/10.4319/lo.1996.41.7.1502}},
  doi          = {{10.4319/lo.1996.41.7.1502}},
  volume       = {{41}},
  year         = {{1996}},
}