Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Structure and stabilization mechanism of a stratified premixed low swirl flame

Nogenmyr, Karl-Johan LU ; Petersson, Per LU ; Bai, Xue-Song LU ; Fureby, C. ; Collin, Robert LU ; Lantz, Andreas LU ; Linne, Mark LU and Aldén, Marcus LU (2011) In Proceedings of the Combustion Institute 33. p.1567-1574
Abstract
This paper presents numerical and experimental investigations of the structure and stabilization of a low swirl turbulent stratified lean premixed methane/air flame. Large-eddy simulations are performed using a two-scalar flamelet model based on mixture fraction for predicting the stratification in the fuel/air mixture and a level-set G-function for tracking the flame. Measurements are carried out with LDV for velocity field and simultaneous PLIF of OH radicals and fuel tracer acetone to identify the structures of the flame. The leading edge flame front is observed to exhibit large-scale flame front wrinkling with a particular W-shaped front frequently occurring. This structure is formed due to the interaction of flame front with the... (More)
This paper presents numerical and experimental investigations of the structure and stabilization of a low swirl turbulent stratified lean premixed methane/air flame. Large-eddy simulations are performed using a two-scalar flamelet model based on mixture fraction for predicting the stratification in the fuel/air mixture and a level-set G-function for tracking the flame. Measurements are carried out with LDV for velocity field and simultaneous PLIF of OH radicals and fuel tracer acetone to identify the structures of the flame. The leading edge flame front is observed to exhibit large-scale flame front wrinkling with a particular W-shaped front frequently occurring. This structure is formed due to the interaction of flame front with the large-scale flow motion in the inner low speed zone and the outer high-speed shear-layer of the burner. The W-structures are formed and destroyed periodically at 15 Hz. The flame stabilization is shown to be dictated by the large-scale vortex rings in the shear-layer. This flame stabilization mechanism is rather different from that found in typical bluff-body stabilized flames and high-swirl flames. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Low-swirl flame, Lean premixed flame stabilization, Flame structures, Laser diagnostics, Large eddy simulation
in
Proceedings of the Combustion Institute
volume
33
pages
1567 - 1574
publisher
Elsevier
external identifiers
  • wos:000285780200173
  • scopus:78650894277
ISSN
1540-7489
DOI
10.1016/j.proci.2010.06.011
language
English
LU publication?
yes
id
cc4ce9db-540f-40a1-967d-b8d7b78d7b91 (old id 1870198)
date added to LUP
2016-04-01 10:03:34
date last changed
2022-01-25 19:23:02
@article{cc4ce9db-540f-40a1-967d-b8d7b78d7b91,
  abstract     = {{This paper presents numerical and experimental investigations of the structure and stabilization of a low swirl turbulent stratified lean premixed methane/air flame. Large-eddy simulations are performed using a two-scalar flamelet model based on mixture fraction for predicting the stratification in the fuel/air mixture and a level-set G-function for tracking the flame. Measurements are carried out with LDV for velocity field and simultaneous PLIF of OH radicals and fuel tracer acetone to identify the structures of the flame. The leading edge flame front is observed to exhibit large-scale flame front wrinkling with a particular W-shaped front frequently occurring. This structure is formed due to the interaction of flame front with the large-scale flow motion in the inner low speed zone and the outer high-speed shear-layer of the burner. The W-structures are formed and destroyed periodically at 15 Hz. The flame stabilization is shown to be dictated by the large-scale vortex rings in the shear-layer. This flame stabilization mechanism is rather different from that found in typical bluff-body stabilized flames and high-swirl flames. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.}},
  author       = {{Nogenmyr, Karl-Johan and Petersson, Per and Bai, Xue-Song and Fureby, C. and Collin, Robert and Lantz, Andreas and Linne, Mark and Aldén, Marcus}},
  issn         = {{1540-7489}},
  keywords     = {{Low-swirl flame; Lean premixed flame stabilization; Flame structures; Laser diagnostics; Large eddy simulation}},
  language     = {{eng}},
  pages        = {{1567--1574}},
  publisher    = {{Elsevier}},
  series       = {{Proceedings of the Combustion Institute}},
  title        = {{Structure and stabilization mechanism of a stratified premixed low swirl flame}},
  url          = {{http://dx.doi.org/10.1016/j.proci.2010.06.011}},
  doi          = {{10.1016/j.proci.2010.06.011}},
  volume       = {{33}},
  year         = {{2011}},
}