Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Concentration-and pH-dependent oligomerization of the thrombin-derived C-terminal peptide TCP-25

Petruk, Ganna LU orcid ; Petrlova, Jitka LU ; Samsudin, Firdaus ; Del Giudice, Rita LU ; Bond, Peter J. and Schmidtchen, Artur LU (2020) In Biomolecules 10(11).
Abstract

Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. By analyzing the intrinsic tryptophan fluorescence, we demonstrate that TCP-25 is more stable at high concentrations (0.3 mM) when... (More)

Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. By analyzing the intrinsic tryptophan fluorescence, we demonstrate that TCP-25 is more stable at high concentrations (0.3 mM) when exposed to high temperatures or a high concentration of denaturant agents, which is compatible with oligomer formation. The denaturation process was reversible above 100 µM of peptide. Dynamic light scattering demonstrated that TCP-25 oligomerization is sensitive to changes in pH, time, and temperature. Computational modeling with an active 18-mer region of TCP-25 showed that the peptide can form pH-dependent higher-order end-to-end oligomers and micelle-like structures, which is in agreement with the experimental data. Thus, TCP-25 exhibits pH-and temperature-dependent dynamic changes involving helical induction and reversible oligomerization, which explains the observed turbidity of the pharmacologically developed formulation.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Antimicrobial peptide, Oligomerization, Peptide self-assembly, pH-and/or concentration-sensitive oligomerization, TCP-25, Thrombin
in
Biomolecules
volume
10
issue
11
article number
1572
pages
19 pages
publisher
MDPI AG
external identifiers
  • pmid:33228042
  • scopus:85096566253
ISSN
2218-273X
DOI
10.3390/biom10111572
language
English
LU publication?
yes
id
cc7421f9-b075-4a0b-8163-a9503af8c60b
date added to LUP
2020-12-03 14:23:41
date last changed
2024-05-31 03:32:08
@article{cc7421f9-b075-4a0b-8163-a9503af8c60b,
  abstract     = {{<p>Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. By analyzing the intrinsic tryptophan fluorescence, we demonstrate that TCP-25 is more stable at high concentrations (0.3 mM) when exposed to high temperatures or a high concentration of denaturant agents, which is compatible with oligomer formation. The denaturation process was reversible above 100 µM of peptide. Dynamic light scattering demonstrated that TCP-25 oligomerization is sensitive to changes in pH, time, and temperature. Computational modeling with an active 18-mer region of TCP-25 showed that the peptide can form pH-dependent higher-order end-to-end oligomers and micelle-like structures, which is in agreement with the experimental data. Thus, TCP-25 exhibits pH-and temperature-dependent dynamic changes involving helical induction and reversible oligomerization, which explains the observed turbidity of the pharmacologically developed formulation.</p>}},
  author       = {{Petruk, Ganna and Petrlova, Jitka and Samsudin, Firdaus and Del Giudice, Rita and Bond, Peter J. and Schmidtchen, Artur}},
  issn         = {{2218-273X}},
  keywords     = {{Antimicrobial peptide; Oligomerization; Peptide self-assembly; pH-and/or concentration-sensitive oligomerization; TCP-25; Thrombin}},
  language     = {{eng}},
  number       = {{11}},
  publisher    = {{MDPI AG}},
  series       = {{Biomolecules}},
  title        = {{Concentration-and pH-dependent oligomerization of the thrombin-derived C-terminal peptide TCP-25}},
  url          = {{http://dx.doi.org/10.3390/biom10111572}},
  doi          = {{10.3390/biom10111572}},
  volume       = {{10}},
  year         = {{2020}},
}