Advanced

Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease

Ye, Zheng; Altena, Ellemarije; Nombela, Cristina; Housden, Charlotte R; Maxwell, Helen; Rittman, Timothy; Huddleston, Chelan; Rae, Charlotte L; Regenthal, Ralf and Sahakian, Barbara J, et al. (2014) In Brain 137(Pt 4). p.55-1145
Abstract

Impulsivity is common in Parkinson's disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic 'overdose' and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson's disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with... (More)

Impulsivity is common in Parkinson's disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic 'overdose' and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson's disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson's disease (46-76 years old, 11 male, Hoehn and Yahr stage 1.5-3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54-74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson's disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson's Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson's disease.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
publishing date
type
Contribution to journal
publication status
published
keywords
Aged, Brain, Citalopram, Cross-Over Studies, Diffusion Tensor Imaging, Double-Blind Method, Female, Humans, Impulsive Behavior, Male, Middle Aged, Parkinson Disease, Reaction Time, Serotonin Uptake Inhibitors, Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't
in
Brain
volume
137
issue
Pt 4
pages
11 pages
publisher
Oxford University Press
external identifiers
  • scopus:84897823281
ISSN
1460-2156
DOI
10.1093/brain/awu032
language
English
LU publication?
no
id
d1422fba-8303-476c-b64b-eae444282f08
date added to LUP
2016-11-24 15:14:56
date last changed
2017-07-30 05:17:50
@article{d1422fba-8303-476c-b64b-eae444282f08,
  abstract     = {<p>Impulsivity is common in Parkinson's disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic 'overdose' and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson's disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson's disease (46-76 years old, 11 male, Hoehn and Yahr stage 1.5-3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54-74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson's disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson's Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson's disease.</p>},
  author       = {Ye, Zheng and Altena, Ellemarije and Nombela, Cristina and Housden, Charlotte R and Maxwell, Helen and Rittman, Timothy and Huddleston, Chelan and Rae, Charlotte L and Regenthal, Ralf and Sahakian, Barbara J and Barker, Roger A and Robbins, Trevor W and Rowe, James B},
  issn         = {1460-2156},
  keyword      = {Aged,Brain,Citalopram,Cross-Over Studies,Diffusion Tensor Imaging,Double-Blind Method,Female,Humans,Impulsive Behavior,Male,Middle Aged,Parkinson Disease,Reaction Time,Serotonin Uptake Inhibitors,Journal Article,Randomized Controlled Trial,Research Support, Non-U.S. Gov't},
  language     = {eng},
  number       = {Pt 4},
  pages        = {55--1145},
  publisher    = {Oxford University Press},
  series       = {Brain},
  title        = {Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease},
  url          = {http://dx.doi.org/10.1093/brain/awu032},
  volume       = {137},
  year         = {2014},
}