Advanced

Performance Optimization of Control Applications on Fog Computing Platforms Using Scheduling and Isolation

Barzegaran, Mohammadreza ; Cervin, Anton LU and Pop, Paul (2020) In IEEE Access 8. p.104085-104098
Abstract
In this paper, we address mixed-criticality applications characterized by their safety criticality and time-dependent performance, which are virtualized on a Fog Computing Platform (FCP). The FCP is implemented as a set of interconnected multicore computing nodes, and brings computation and communication closer to the edge of the network, where the machines are located in industrial applications. We use partitioning and static-cyclic scheduling to provide isolation among mixed-criticality tasks and to guarantee their timing requirements. The temporal and spatial isolation is enforced via partitions, which execute tasks with the same criticality level. We consider that the tasks are scheduled using static cyclic scheduling. We are... (More)
In this paper, we address mixed-criticality applications characterized by their safety criticality and time-dependent performance, which are virtualized on a Fog Computing Platform (FCP). The FCP is implemented as a set of interconnected multicore computing nodes, and brings computation and communication closer to the edge of the network, where the machines are located in industrial applications. We use partitioning and static-cyclic scheduling to provide isolation among mixed-criticality tasks and to guarantee their timing requirements. The temporal and spatial isolation is enforced via partitions, which execute tasks with the same criticality level. We consider that the tasks are scheduled using static cyclic scheduling. We are interested in determining the mapping of tasks to the cores of the fog nodes, the assignment of tasks to the partitions, the partition schedule tables, and the tasks’ schedule tables, such that the Quality-of-Control for the control tasks is maximized and we meet the timing requirements for all tasks, including tasks with lower-criticality levels. We are also interested in determining the periods for control tasks to balance the schedulability and the control performance. We have proposed a Simulated Annealing metaheuristic, which relies on a heuristic algorithm for determining the schedules and partitions, to solve this optimization problem. Our optimization strategy has been evaluated on several test cases, showing the effectiveness of the proposed method. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Fog Computing, mixed-criticality Systems, Quality-of-Control, Scheduling, Partitioning, Optimization
in
IEEE Access
volume
8
article number
9104989
pages
104085 - 104098
publisher
IEEE - Institute of Electrical and Electronics Engineers Inc.
external identifiers
  • scopus:85086470145
ISSN
2169-3536
DOI
10.1109/ACCESS.2020.2999322
project
ELLIIT LU P02: Co-Design of Robust and Secure Networked Embedded Control Systems
Nordic University Hub on Internet of Things
language
English
LU publication?
yes
id
d6af13ac-332c-44af-83d9-951fc19ca005
date added to LUP
2020-06-02 16:11:56
date last changed
2020-12-29 02:13:14
@article{d6af13ac-332c-44af-83d9-951fc19ca005,
  abstract     = {In this paper, we address mixed-criticality applications characterized by their safety criticality and time-dependent performance, which are virtualized on a Fog Computing Platform (FCP). The FCP is implemented as a set of interconnected multicore computing nodes, and brings computation and communication closer to the edge of the network, where the machines are located in industrial applications. We use partitioning and static-cyclic scheduling to provide isolation among mixed-criticality tasks and to guarantee their timing requirements. The temporal and spatial isolation is enforced via partitions, which execute tasks with the same criticality level. We consider that the tasks are scheduled using static cyclic scheduling. We are interested in determining the mapping of tasks to the cores of the fog nodes, the assignment of tasks to the partitions, the partition schedule tables, and the tasks’ schedule tables, such that the Quality-of-Control for the control tasks is maximized and we meet the timing requirements for all tasks, including tasks with lower-criticality levels. We are also interested in determining the periods for control tasks to balance the schedulability and the control performance. We have proposed a Simulated Annealing metaheuristic, which relies on a heuristic algorithm for determining the schedules and partitions, to solve this optimization problem. Our optimization strategy has been evaluated on several test cases, showing the effectiveness of the proposed method.},
  author       = {Barzegaran, Mohammadreza and Cervin, Anton and Pop, Paul},
  issn         = {2169-3536},
  language     = {eng},
  pages        = {104085--104098},
  publisher    = {IEEE - Institute of Electrical and Electronics Engineers Inc.},
  series       = {IEEE Access},
  title        = {Performance Optimization of Control Applications on Fog Computing Platforms Using Scheduling and Isolation},
  url          = {http://dx.doi.org/10.1109/ACCESS.2020.2999322},
  doi          = {10.1109/ACCESS.2020.2999322},
  volume       = {8},
  year         = {2020},
}