Advanced

Peel testing of a packaging material laminate studied by in-situ X-ray tomography and cohesive zone modeling

Hallberg, Håkan LU ; Pettersson, Simon LU ; Engqvist, Jonas LU ; Hall, Stephen LU and Toft, Nils (2019) In International Journal of Adhesion and Adhesives 95.
Abstract (Swedish)
Peel testing is used to study adhesive fracture in packaging material laminates. The focus is on improved understanding of the mechanisms that provide a laminate's adhesive properties, as measured by standard macroscopic tests. Using a specially-designed peel test load rig, peel tests are performed in-situ in a laboratory X-ray tomograph. The peel test results are analyzed using a combination of theoretical models for the adhesive fracture and 3D finite element simulations based on a cohesive zone model approach. Complementary experiments are performed to characterize the properties of the peel arm material. Relaxation of the material is found to occur during image acquisition in the in-situ tests. Despite this, it is possible to obtain 3D... (More)
Peel testing is used to study adhesive fracture in packaging material laminates. The focus is on improved understanding of the mechanisms that provide a laminate's adhesive properties, as measured by standard macroscopic tests. Using a specially-designed peel test load rig, peel tests are performed in-situ in a laboratory X-ray tomograph. The peel test results are analyzed using a combination of theoretical models for the adhesive fracture and 3D finite element simulations based on a cohesive zone model approach. Complementary experiments are performed to characterize the properties of the peel arm material. Relaxation of the material is found to occur during image acquisition in the in-situ tests. Despite this, it is possible to obtain 3D reconstructions with good quality during peeling. Peel test properties like the peel arm's root rotation angle and peel arm thinning are quantified. In the present 90° peel tests, it is found that the delamination progresses in an inhomogeneous manner, with the edges delaminating before the center. A number of issues and mechanisms during the peel test are identified. As an example, the peel arm itself can sometimes split, leaving residues of adhesive on the substrate surface. Such phenomena indicate the ambiguities involved in assessing adhesion properties from standard macroscopic force-displacement measurements, without accounting for the mechanisms involved on finer length scales. (Less)
Abstract
Peel testing is used to study adhesive fracture in packaging material laminates. The focus is on improved understanding of the mechanisms that provide a laminate's adhesive properties, as measured by standard macroscopic tests. Using a specially-designed peel test load rig, peel tests are performed in-situ in a laboratory X-ray tomograph. The peel test results are analyzed using a combination of theoretical models for the adhesive fracture and 3D finite element simulations based on a cohesive zone model approach. Complementary experiments are performed to characterize the properties of the peel arm material. Relaxation of the material is found to occur during image acquisition in the in-situ tests. Despite this, it is possible to obtain 3D... (More)
Peel testing is used to study adhesive fracture in packaging material laminates. The focus is on improved understanding of the mechanisms that provide a laminate's adhesive properties, as measured by standard macroscopic tests. Using a specially-designed peel test load rig, peel tests are performed in-situ in a laboratory X-ray tomograph. The peel test results are analyzed using a combination of theoretical models for the adhesive fracture and 3D finite element simulations based on a cohesive zone model approach. Complementary experiments are performed to characterize the properties of the peel arm material. Relaxation of the material is found to occur during image acquisition in the in-situ tests. Despite this, it is possible to obtain 3D reconstructions with good quality during peeling. Peel test properties like the peel arm's root rotation angle and peel arm thinning are quantified. In the present 90° peel tests, it is found that the delamination progresses in an inhomogeneous manner, with the edges delaminating before the center. A number of issues and mechanisms during the peel test are identified. As an example, the peel arm itself can sometimes split, leaving residues of adhesive on the substrate surface. Such phenomena indicate the ambiguities involved in assessing adhesion properties from standard macroscopic force-displacement measurements, without accounting for the mechanisms involved on finer length scales. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
International Journal of Adhesion and Adhesives
volume
95
publisher
Elsevier
external identifiers
  • scopus:85071497688
ISSN
0143-7496
DOI
10.1016/j.ijadhadh.2019.102428
language
English
LU publication?
yes
id
dbaa8cc1-780b-4d94-bee3-344cb17ca3d3
date added to LUP
2019-09-02 08:48:54
date last changed
2019-10-08 03:57:13
@article{dbaa8cc1-780b-4d94-bee3-344cb17ca3d3,
  abstract     = {Peel testing is used to study adhesive fracture in packaging material laminates. The focus is on improved understanding of the mechanisms that provide a laminate's adhesive properties, as measured by standard macroscopic tests. Using a specially-designed peel test load rig, peel tests are performed in-situ in a laboratory X-ray tomograph. The peel test results are analyzed using a combination of theoretical models for the adhesive fracture and 3D finite element simulations based on a cohesive zone model approach. Complementary experiments are performed to characterize the properties of the peel arm material. Relaxation of the material is found to occur during image acquisition in the in-situ tests. Despite this, it is possible to obtain 3D reconstructions with good quality during peeling. Peel test properties like the peel arm's root rotation angle and peel arm thinning are quantified. In the present 90° peel tests, it is found that the delamination progresses in an inhomogeneous manner, with the edges delaminating before the center. A number of issues and mechanisms during the peel test are identified. As an example, the peel arm itself can sometimes split, leaving residues of adhesive on the substrate surface. Such phenomena indicate the ambiguities involved in assessing adhesion properties from standard macroscopic force-displacement measurements, without accounting for the mechanisms involved on finer length scales.},
  articleno    = {102428},
  author       = {Hallberg, Håkan and Pettersson, Simon and Engqvist, Jonas and Hall, Stephen and Toft, Nils},
  issn         = {0143-7496},
  language     = {eng},
  publisher    = {Elsevier},
  series       = {International Journal of Adhesion and Adhesives},
  title        = {Peel testing of a packaging material laminate studied by in-situ X-ray tomography and cohesive zone modeling},
  url          = {http://dx.doi.org/10.1016/j.ijadhadh.2019.102428},
  volume       = {95},
  year         = {2019},
}