Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

DNS STUDY OF ROLE PLAYED BY MOLECULAR TRANSPORT IN BENDING EFFECT

Yu, Rixin LU and Lipatnikov, Andrei N. (2017) Tenth mediterranean Combustion Symposium
Abstract
A DNS study of propagation of either an infinitely thin passive interface or a reaction wave of a nonzero thickness in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence was performed by solving Navier-Stokes equations and either level set or reaction-diffusion equation, respectively, with all other things being equal. The simulations covered a wide range of conditions, i.e. five different (from 0.5 to 10.0) ratios of the rms turbulent velocity u' to the laminar wave speed S_L^0, three different (2.1, 3.7, and 6.7) ratios of the integral length scale L_11 of the turbulence to the laminar wave thickness δ_F, three different turbulent Reynolds numbers, and two different Zeldovich numbers Ze = 6.0 and 17.1.... (More)
A DNS study of propagation of either an infinitely thin passive interface or a reaction wave of a nonzero thickness in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence was performed by solving Navier-Stokes equations and either level set or reaction-diffusion equation, respectively, with all other things being equal. The simulations covered a wide range of conditions, i.e. five different (from 0.5 to 10.0) ratios of the rms turbulent velocity u' to the laminar wave speed S_L^0, three different (2.1, 3.7, and 6.7) ratios of the integral length scale L_11 of the turbulence to the laminar wave thickness δ_F, three different turbulent Reynolds numbers, and two different Zeldovich numbers Ze = 6.0 and 17.1. Accordingly, the Damköhler Da and Karlovitz Ka numbers were varied from 0.2 to 13.5 and 0.55 to 36.2, respectively, thus, covering both flamelet and thin-reaction-zone regimes of premixed turbulent combustion. The computed fully-developed bulk consumption velocity is significantly reduced when L_11⁄δ_F is decreased, with the effect being most pronounced at the highest u'⁄(S_L^0 )=10. Moreover, the consumption velocity normalized using S_L^0 and obtained by simulating the self-propagation of an infinitely thin interface by solving the level set equation depends linearly on u'⁄(S_L^0 ). On the contrary, dependencies of the normalized consumption velocity on u'⁄(S_L^0 ), computed by solving the reaction-diffusion equation (which describes a reaction wave of a nonzero thickness), show bending, with the effect being increased by δ_F⁄L_11 . Under conditions of the present study, the bending effect is controlled by a decrease in the rate of a relative increase δA_F in the reaction-zone-surface area with increasing u'⁄(S_L^0 ). In its turn, the bending of the δA_F (u'⁄(S_L^0 ))-curves stems from inefficiency of small-scale turbulent eddies in wrinkling the reaction-zone surface, because such small-scale wrinkles characterized by a high local curvature are smoothed out by molecular transport within the reaction wave. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to conference
publication status
published
subject
pages
12 pages
conference name
Tenth mediterranean Combustion Symposium
conference location
Napoli, Italy
conference dates
2017-09-17 - 2017-09-21
language
English
LU publication?
yes
id
dd94880e-5b9e-4dac-bbce-57e16ee38c5a
alternative location
http://ircserver2.irc.cnr.it/wordp/wp-content/uploads/2017/09/TC29_Yu.pdf
date added to LUP
2017-10-04 18:33:34
date last changed
2018-11-21 21:34:59
@misc{dd94880e-5b9e-4dac-bbce-57e16ee38c5a,
  abstract     = {{A DNS study of propagation of either an infinitely thin passive interface or a reaction wave of a nonzero thickness in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence was performed by solving Navier-Stokes equations and either level set or reaction-diffusion equation, respectively, with all other things being equal. The simulations covered a wide range of conditions, i.e. five different  (from 0.5 to 10.0) ratios of the rms turbulent velocity u' to the laminar wave speed S_L^0, three different (2.1, 3.7, and 6.7) ratios of the integral length scale L_11 of the turbulence to the laminar wave thickness δ_F, three different turbulent Reynolds numbers, and two different Zeldovich numbers Ze = 6.0 and 17.1. Accordingly, the Damköhler Da and Karlovitz Ka numbers were varied from 0.2 to 13.5 and 0.55 to 36.2, respectively, thus, covering both flamelet and thin-reaction-zone regimes of premixed turbulent combustion. The computed fully-developed bulk consumption velocity is significantly reduced when L_11⁄δ_F  is decreased, with the effect being most pronounced at the highest u'⁄(S_L^0 )=10. Moreover, the consumption velocity normalized using S_L^0 and obtained by simulating the self-propagation of an infinitely thin interface by solving the level set equation depends linearly on u'⁄(S_L^0 ). On the contrary, dependencies of the normalized consumption velocity on u'⁄(S_L^0 ), computed by solving the reaction-diffusion equation (which describes a reaction wave of a nonzero thickness), show bending, with the effect being increased by δ_F⁄L_11 . Under conditions of the present study, the bending effect is controlled by a decrease in the rate of a relative increase δA_F in the reaction-zone-surface area with increasing u'⁄(S_L^0 ). In its turn, the bending of the δA_F (u'⁄(S_L^0 ))-curves stems from inefficiency of small-scale turbulent eddies in wrinkling the reaction-zone surface, because such small-scale wrinkles characterized by a high local curvature are smoothed out by molecular transport within the reaction wave.}},
  author       = {{Yu, Rixin and Lipatnikov, Andrei N.}},
  language     = {{eng}},
  title        = {{DNS STUDY OF ROLE PLAYED BY MOLECULAR TRANSPORT IN BENDING EFFECT}},
  url          = {{http://ircserver2.irc.cnr.it/wordp/wp-content/uploads/2017/09/TC29_Yu.pdf}},
  year         = {{2017}},
}