Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A Brief History of the Discovery of Amelogenin Nanoribbons In Vitro and In Vivo

Bai, Y. ; Bonde, J. LU orcid ; Carneiro, K.M.M. ; Zhang, Y. ; Li, W. and Habelitz, S. (2021) In Journal of Dental Research
Abstract

Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were... (More)

Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were demineralized and stained for transmission electron microscopy analysis. However, at that time, researchers were not aware of the ability of amelogenin to form nanoribbons and instead associated the filamentous nanostructures with possible imprints of mineral ribbons in the gel-like matrix of developing enamel. Further evidence for the significance of amelogenin nanoribbons for enamel development was stipulated when recent mineralization experiments succeeded in templating and orienting the growth of apatite ribbons along the protein nanoribbon framework. This article provides a brief historical review of the discovery of amelogenin nanoribbons in our laboratory in the context of reports by others on similar structures in the developing enamel matrix.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
apatite, biomineralization, developing enamel matrix, enamel, extracellular matrix, protein nanoribbons
in
Journal of Dental Research
publisher
International & American Associations for Dental Research
external identifiers
  • scopus:85116526134
  • pmid:34612757
ISSN
0022-0345
DOI
10.1177/00220345211043463
language
English
LU publication?
yes
additional info
Publisher Copyright: © International Association for Dental Research and American Association for Dental, Oral, and Craniofacial Research 2021.
id
de282b24-9994-4580-9608-f65a20e9deba
date added to LUP
2021-10-19 12:07:15
date last changed
2024-06-15 18:26:25
@article{de282b24-9994-4580-9608-f65a20e9deba,
  abstract     = {{<p>Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were demineralized and stained for transmission electron microscopy analysis. However, at that time, researchers were not aware of the ability of amelogenin to form nanoribbons and instead associated the filamentous nanostructures with possible imprints of mineral ribbons in the gel-like matrix of developing enamel. Further evidence for the significance of amelogenin nanoribbons for enamel development was stipulated when recent mineralization experiments succeeded in templating and orienting the growth of apatite ribbons along the protein nanoribbon framework. This article provides a brief historical review of the discovery of amelogenin nanoribbons in our laboratory in the context of reports by others on similar structures in the developing enamel matrix.</p>}},
  author       = {{Bai, Y. and Bonde, J. and Carneiro, K.M.M. and Zhang, Y. and Li, W. and Habelitz, S.}},
  issn         = {{0022-0345}},
  keywords     = {{apatite; biomineralization; developing enamel matrix; enamel; extracellular matrix; protein nanoribbons}},
  language     = {{eng}},
  publisher    = {{International & American Associations for Dental Research}},
  series       = {{Journal of Dental Research}},
  title        = {{A Brief History of the Discovery of Amelogenin Nanoribbons In Vitro and In Vivo}},
  url          = {{http://dx.doi.org/10.1177/00220345211043463}},
  doi          = {{10.1177/00220345211043463}},
  year         = {{2021}},
}