Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Homography-Based Minimal-Case Relative Pose Estimation With Known Gravity Direction

Ding, Yaqing LU ; Yang, Jian ; Ponce, Jean and Kong, Hui (2022) In IEEE Transactions on Pattern Analysis and Machine Intelligence 44(1). p.196-210
Abstract
In this paper, we propose a novel approach to two-view minimal-case relative pose problems based on homography with known gravity direction. This case is relevant to smart phones, tablets, and other camera-IMU (Inertial measurement unit) systems which have accelerometers to measure the gravity vector. We explore the rank-1 constraint on the difference between the euclidean homography matrix and the corresponding rotation, and propose an efficient two-step solution for solving both the calibrated and semi-calibrated (unknown focal length) problems. Based on the hidden variable technique , we convert the problems to the polynomial eigenvalue problems, and derive new 3.5-point, 3.5-point, 4-point solvers for two cameras such that the two... (More)
In this paper, we propose a novel approach to two-view minimal-case relative pose problems based on homography with known gravity direction. This case is relevant to smart phones, tablets, and other camera-IMU (Inertial measurement unit) systems which have accelerometers to measure the gravity vector. We explore the rank-1 constraint on the difference between the euclidean homography matrix and the corresponding rotation, and propose an efficient two-step solution for solving both the calibrated and semi-calibrated (unknown focal length) problems. Based on the hidden variable technique , we convert the problems to the polynomial eigenvalue problems, and derive new 3.5-point, 3.5-point, 4-point solvers for two cameras such that the two focal lengths are unknown but equal, one of them is unknown, and both are unknown and possibly different, respectively. We present detailed analyses and comparisons with the existing 6- and 7-point solvers, including results with smart phone images. (Less)
Please use this url to cite or link to this publication:
author
; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
IEEE Transactions on Pattern Analysis and Machine Intelligence
volume
44
issue
1
pages
196 - 210
publisher
IEEE - Institute of Electrical and Electronics Engineers Inc.
external identifiers
  • pmid:32750796
  • scopus:85122546770
ISSN
1939-3539
DOI
10.1109/TPAMI.2020.3005373
language
English
LU publication?
no
id
e395d980-00d0-4bb5-ae3e-6aa75a66d21b
date added to LUP
2022-09-08 10:45:26
date last changed
2023-03-20 10:00:31
@article{e395d980-00d0-4bb5-ae3e-6aa75a66d21b,
  abstract     = {{In this paper, we propose a novel approach to two-view minimal-case relative pose problems based on homography with known gravity direction. This case is relevant to smart phones, tablets, and other camera-IMU (Inertial measurement unit) systems which have accelerometers to measure the gravity vector. We explore the rank-1 constraint on the difference between the euclidean homography matrix and the corresponding rotation, and propose an efficient two-step solution for solving both the calibrated and semi-calibrated (unknown focal length) problems. Based on the hidden variable technique , we convert the problems to the polynomial eigenvalue problems, and derive new 3.5-point, 3.5-point, 4-point solvers for two cameras such that the two focal lengths are unknown but equal, one of them is unknown, and both are unknown and possibly different, respectively. We present detailed analyses and comparisons with the existing 6- and 7-point solvers, including results with smart phone images.}},
  author       = {{Ding, Yaqing and Yang, Jian and Ponce, Jean and Kong, Hui}},
  issn         = {{1939-3539}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{196--210}},
  publisher    = {{IEEE - Institute of Electrical and Electronics Engineers Inc.}},
  series       = {{IEEE Transactions on Pattern Analysis and Machine Intelligence}},
  title        = {{Homography-Based Minimal-Case Relative Pose Estimation With Known Gravity Direction}},
  url          = {{http://dx.doi.org/10.1109/TPAMI.2020.3005373}},
  doi          = {{10.1109/TPAMI.2020.3005373}},
  volume       = {{44}},
  year         = {{2022}},
}