Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Octupole states in Tl 207 studied through β decay

Berry, T.A. ; Fahlander, C. LU ; Wearing, F.P. and De Witte, H. (2020) In Physical Review C 101(5).
Abstract
The β decay of Hg207 into the single-proton-hole nucleus Tl207 has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs1/2-1, πd3/2-1, and πh11/2-1 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model... (More)
The β decay of Hg207 into the single-proton-hole nucleus Tl207 has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs1/2-1, πd3/2-1, and πh11/2-1 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model calculations and previous observations made in this region, and systematic underestimation of the energy of the octupole vibrational states is noted. We suggest that in order to resolve the difference in predicted energies for collective and noncollective t=1 states (t is the number of nucleons breaking the Pb208 core), the effect of t=2 mixing may be reduced for octupole-coupled states. The inclusion of mixing with t=0,2,3 excitations is necessary to replicate all t=1 state energies accurately. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. (Less)
Please use this url to cite or link to this publication:
author
; ; and
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review C
volume
101
issue
5
article number
054311
publisher
American Physical Society
external identifiers
  • scopus:85086003616
ISSN
2469-9985
DOI
10.1103/PhysRevC.101.054311
language
English
LU publication?
yes
id
ee26ac18-a3af-41bd-a145-23c8f6727da6
date added to LUP
2022-04-07 10:15:13
date last changed
2022-04-22 22:45:46
@article{ee26ac18-a3af-41bd-a145-23c8f6727da6,
  abstract     = {{The β decay of Hg207 into the single-proton-hole nucleus Tl207 has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs1/2-1, πd3/2-1, and πh11/2-1 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model calculations and previous observations made in this region, and systematic underestimation of the energy of the octupole vibrational states is noted. We suggest that in order to resolve the difference in predicted energies for collective and noncollective t=1 states (t is the number of nucleons breaking the Pb208 core), the effect of t=2 mixing may be reduced for octupole-coupled states. The inclusion of mixing with t=0,2,3 excitations is necessary to replicate all t=1 state energies accurately. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.}},
  author       = {{Berry, T.A. and Fahlander, C. and Wearing, F.P. and De Witte, H.}},
  issn         = {{2469-9985}},
  language     = {{eng}},
  number       = {{5}},
  publisher    = {{American Physical Society}},
  series       = {{Physical Review C}},
  title        = {{Octupole states in Tl 207 studied through β decay}},
  url          = {{http://dx.doi.org/10.1103/PhysRevC.101.054311}},
  doi          = {{10.1103/PhysRevC.101.054311}},
  volume       = {{101}},
  year         = {{2020}},
}