Advanced

Reconstruction of sciatic nerve after traumatic injury in humans - factors influencing outcome as related to neurobiological knowledge from animal research

Maripuu, Amanda ; Björkman, Anders LU ; Björkman-Burtscher, Isabella M. LU ; Mannfolk, Peter LU ; Andersson, Gert LU and Dahlin, Lars B. LU (2012) In Journal of Brachial Plexus and Peripheral Nerve Injury 7(1). p.40-52
Abstract

Background: The aim was to evaluate what can be learned from rat models when treating patients suffering from a sciatic nerve injury.Methods: Two patients with traumatic sciatic nerve injury are presented with examination of motor and sensory function with a five-year follow-up. Reconstruction of the nerve injury was performed on the second and third day, respectively, after injury using sural nerve grafts taken from the injured leg. The patients were examined during follow-up by electromyography (EMG), MRI and functionalMRI (fMRI) to evaluate nerve reinnervation, cell death in dorsal root ganglia (DRG) and cortical activation; factors that were related to clinical history in the patients.Results: One patient regained good motor... (More)

Background: The aim was to evaluate what can be learned from rat models when treating patients suffering from a sciatic nerve injury.Methods: Two patients with traumatic sciatic nerve injury are presented with examination of motor and sensory function with a five-year follow-up. Reconstruction of the nerve injury was performed on the second and third day, respectively, after injury using sural nerve grafts taken from the injured leg. The patients were examined during follow-up by electromyography (EMG), MRI and functionalMRI (fMRI) to evaluate nerve reinnervation, cell death in dorsal root ganglia (DRG) and cortical activation; factors that were related to clinical history in the patients.Results: One patient regained good motor function of the lower leg and foot, confirmed by EMG showing good activation in the leg muscles and some reinnervation in the foot muscles, as well as some sensory function of the sole of the foot. The other patient regained no motor (confirmed by EMG) or sensory function in the leg or foot. Factors most influential on outcome in two cases were type of injury, nerve gap length and particularly type of reconstruction. A difference in follow-up and rehabilitation likely also influence outcome. MRI did not show any differences in DRG size of injured side compared to the uninjured side. fMRI showed normal activation in the primary somatosensory cortex as a response to cutaneous stimulation of the normal foot. However, none of the two patients showed any activation in the primary somatosensory cortex following cutaneous stimulation of the injured foot.Conclusions: In decision making of nerve repair and reconstruction data from animal experiments can be translated to clinical practice and to predict outcome in patients, although such data should be interpreted with caution and linked to clinical experience. Rat models may be useful to identify and study factors that influence outcome after peripheral nerve repair and reconstruction; procedures that should be done correctly and with a competent team. However, some factors, such as cognitive capacity and coping, known to influence outcome following nerve repair, are difficult to study in animal models. Future research has to find and develop new paths and techniques to study changes in the central nervous system after nerve injury and develop strategies to utilize brain plasticity during the rehabilitation.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Dorsal root ganglia, FMRI, Nerve regeneration, Outcome, Reconstruction, Sciatic nerve injury
in
Journal of Brachial Plexus and Peripheral Nerve Injury
volume
7
issue
1
article number
7
pages
40 - 52
publisher
BioMed Central (BMC)
external identifiers
  • scopus:84867199338
ISSN
1749-7221
DOI
10.1186/1749-7221-7-7
language
English
LU publication?
yes
id
ee2ec261-c697-4461-81de-8f9421218070
date added to LUP
2019-06-17 14:21:49
date last changed
2020-01-28 13:39:35
@article{ee2ec261-c697-4461-81de-8f9421218070,
  abstract     = {<p>Background: The aim was to evaluate what can be learned from rat models when treating patients suffering from a sciatic nerve injury.Methods: Two patients with traumatic sciatic nerve injury are presented with examination of motor and sensory function with a five-year follow-up. Reconstruction of the nerve injury was performed on the second and third day, respectively, after injury using sural nerve grafts taken from the injured leg. The patients were examined during follow-up by electromyography (EMG), MRI and functionalMRI (fMRI) to evaluate nerve reinnervation, cell death in dorsal root ganglia (DRG) and cortical activation; factors that were related to clinical history in the patients.Results: One patient regained good motor function of the lower leg and foot, confirmed by EMG showing good activation in the leg muscles and some reinnervation in the foot muscles, as well as some sensory function of the sole of the foot. The other patient regained no motor (confirmed by EMG) or sensory function in the leg or foot. Factors most influential on outcome in two cases were type of injury, nerve gap length and particularly type of reconstruction. A difference in follow-up and rehabilitation likely also influence outcome. MRI did not show any differences in DRG size of injured side compared to the uninjured side. fMRI showed normal activation in the primary somatosensory cortex as a response to cutaneous stimulation of the normal foot. However, none of the two patients showed any activation in the primary somatosensory cortex following cutaneous stimulation of the injured foot.Conclusions: In decision making of nerve repair and reconstruction data from animal experiments can be translated to clinical practice and to predict outcome in patients, although such data should be interpreted with caution and linked to clinical experience. Rat models may be useful to identify and study factors that influence outcome after peripheral nerve repair and reconstruction; procedures that should be done correctly and with a competent team. However, some factors, such as cognitive capacity and coping, known to influence outcome following nerve repair, are difficult to study in animal models. Future research has to find and develop new paths and techniques to study changes in the central nervous system after nerve injury and develop strategies to utilize brain plasticity during the rehabilitation.</p>},
  author       = {Maripuu, Amanda and Björkman, Anders and Björkman-Burtscher, Isabella M. and Mannfolk, Peter and Andersson, Gert and Dahlin, Lars B.},
  issn         = {1749-7221},
  language     = {eng},
  month        = {10},
  number       = {1},
  pages        = {40--52},
  publisher    = {BioMed Central (BMC)},
  series       = {Journal of Brachial Plexus and Peripheral Nerve Injury},
  title        = {Reconstruction of sciatic nerve after traumatic injury in humans - factors influencing outcome as related to neurobiological knowledge from animal research},
  url          = {http://dx.doi.org/10.1186/1749-7221-7-7},
  doi          = {10.1186/1749-7221-7-7},
  volume       = {7},
  year         = {2012},
}