Variational existence theory for hydroelastic solitary waves : Une théorie variationnelle d'existence d'ondes solitaires hydroélastiques
(2016) In Comptes Rendus Mathématique 354(11). p.1078-1086- Abstract
This paper presents an existence theory for solitary waves at the interface between a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an ideal fluid (of finite depth and in irrotational motion) for sufficiently large values of a dimensionless parameter γ. We establish the existence of a minimiser of the wave energy E subject to the constraint I=2μ, where I is the horizontal impulse and 0<μ≪1, and show that the solitary waves detected by our variational method converge (after an appropriate rescaling) to solutions to the nonlinear Schrödinger equation with cubic focussing nonlinearity as μ↓0.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/f6487d0b-dbeb-4f62-9a58-49d32f165d86
- author
- Groves, Mark D.
; Hewer, Benedikt
and Wahlén, Erik
LU
- organization
- publishing date
- 2016-11-01
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Comptes Rendus Mathématique
- volume
- 354
- issue
- 11
- pages
- 9 pages
- publisher
- Elsevier
- external identifiers
-
- wos:000388360700006
- scopus:84994123732
- ISSN
- 1631-073X
- DOI
- 10.1016/j.crma.2016.10.004
- project
- Nonlinear Water Waves
- language
- English
- LU publication?
- yes
- id
- f6487d0b-dbeb-4f62-9a58-49d32f165d86
- date added to LUP
- 2016-11-21 09:54:56
- date last changed
- 2025-02-22 19:17:05
@article{f6487d0b-dbeb-4f62-9a58-49d32f165d86, abstract = {{<p>This paper presents an existence theory for solitary waves at the interface between a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an ideal fluid (of finite depth and in irrotational motion) for sufficiently large values of a dimensionless parameter γ. We establish the existence of a minimiser of the wave energy E subject to the constraint I=2μ, where I is the horizontal impulse and 0<μ≪1, and show that the solitary waves detected by our variational method converge (after an appropriate rescaling) to solutions to the nonlinear Schrödinger equation with cubic focussing nonlinearity as μ↓0.</p>}}, author = {{Groves, Mark D. and Hewer, Benedikt and Wahlén, Erik}}, issn = {{1631-073X}}, language = {{eng}}, month = {{11}}, number = {{11}}, pages = {{1078--1086}}, publisher = {{Elsevier}}, series = {{Comptes Rendus Mathématique}}, title = {{Variational existence theory for hydroelastic solitary waves : Une théorie variationnelle d'existence d'ondes solitaires hydroélastiques}}, url = {{http://dx.doi.org/10.1016/j.crma.2016.10.004}}, doi = {{10.1016/j.crma.2016.10.004}}, volume = {{354}}, year = {{2016}}, }